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Abstract 

Exact solutions to Einstein field equations in spherically symmetric gravitational fields are obtained for an anisotropic matter 
with specified forms for the anisotropic factor and one of the gravitational potentials. The solution of the Einstein field 
equations is reduced to a difference equation with variable rational coefficients which can be solved in general.  It is possible 
to obtain general class of solutions in terms of special functions and elementary functions for different partial geometries.  
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Introduction 

Exact solutions of the Einstein field equations for an anisotropic matter are important in the description of relativistic 
astrophysical processes. In recent years a number of authors have studied exact solutions to the Einstein field equations 
corresponding to the anisotropic matter where the radial component of the pressure differs from the angular component. The 
gravitational field is taken to be spherically symmetric and static since these solutions may be applied to relativistic stars. A 
number of researchers have examined how anisotropic matter affects critical mass, critical surface redshift and stability of 
highly compact bodies. These investigations are contained in the paper by Dev and Gleiser (2003). Some researchers have 
suggested that anisotropy may be important in understanding the gravitational behavior of   boson stars and the role of strange 
matter with densities higher than neutron stars. Mark and Harko (2002) and Sharma and Mukherjee (2002) suggest that 
anisotropy is crucial ingredient in the description of dense stars with strange matter 

In order to solve the field equations, various restrictions have been placed by investigators on the geometry of spacetime and 
the matter content. Mainly two distinct procedures have been adopted to solve these equations for spherically symmetric static 
manifolds. Firstly, the coupled differential equations are solved by computations after choosing an equation of state.  
Secondly, the exact Einstein solutions can be obtained by specifying the geometry. We follow the later technique in an attempt 
to find solutions in terms of special functions and elementary functions that are suitable for description of relativistic stars. 
This approach was recently used by Chaisi and Maharaj (2005) that yield a solution in terms of elementary functions.  This 
solution have considered by many authors in the analysis of gravitational behavior of compact objects, and the study of 
anisotropy under strong gravitational fields. Hence the approach followed in this paper has proved to be a fruitful avenue for 
generating new exact solution for describing the interior spacetimes of relativistic spheres. 

The objective of this paper is to provide systematically a rich family of Einstein field equations with anisotropic matter which 
satisfy the physical properties similar to the recent treatment of Maharaj and Komathiraj (2007). In Section 2, the Einstein field 
equations for the static spherically symmetric line element with anisotropic matter is expressed as an equivalent set of 
differential equations utilizing a transformation from Durgapal and Bannerji (1983). We chose particular forms for one of the 
gravitational potentials and the anisotropic factor, which enables us to obtain the condition of pressure anisotropy in the 
remaining gravitational potential in Section 3.  We assume a solution in a series form which yields recurrence relation, which 
we manage to solve from first principle. It is then possible to exhibit exact solutions to the Einstein field equations. We 
demonstrate that the exact solutions to the Einstein field equations in terms of hyper geometric functions are possible and we 
generate two linearly independent classes of solutions by determining the specific restriction on the parameters in section 4. 
Finally in section 5, we discuss the physical feature of the solutions. 

1. Field equations 

Assume that the spacetime is spherically symmetric and static which is consistent with the study of anisotropic compact 
objects.  Therefore there exists coordinates   such that the line element is of the form  
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In Schwarzschild coordinates , where  and   are arbitrary functions.  For a perfect fluid the Einstein 
field equations can be written in the form 
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where primes denote differentiation with respect to r. In equation (2) - (4), the quantity  is the energy density, is the radial 
pressure and  is the tangential pressure. The Einstein field equations (2) - (4) describe the gravitational behavior for an 
anisotropic imperfect fluid. For matter distributions with   
fluid may be regained from (2) - (4). A different but equivalent form of the field equations is generated by introducing a new 
independent variable x and two new functions y and Z.  

These are given by 
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In equation (5), A and C are arbitrary constants. Under the transformation (5), the system (2)  (4) becomes  
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where dots denote differentiations with respect to x. The quantity  is defined as the measure of anisotropy or anisotropy 
factor. The Einstein field equations as expressed in (6) - (9) is a system of four nonlinear equations in the six unknown 

.  The advantage of this system lies in the fact that a solution can, upon a suitable substitution of  and 
be readily obtain by integrating (8) which is second order and linear in y.   

2. Master equation 

We solve the Einstein field equations (6)  (9) by making explicit choices for the gravitational potential Z and the measure of 
anisotropy . For the metric function  we make the choice  
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The potential Z in (10) is regular at the origin and continuous in the stellar interior of the star for a wide range of value of the 
parameter k. Therefore the form chosen in (10) are physically acceptable. This specific choice for Z simplifies the integration 
process. Substitution of (10) into (8) leads to the equation 
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It is necessary to specify the anisotropic factor  to solve (11). A variety of choices for  is possible but only a few are 
physically reasonable which generate closed form solutions. The differential equation (11) can be reduced to simpler form if 
we let  
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is a real constant.  Upon substituting the choice (12) into equation (11) we obtain 
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It is convenient to introduce the new variable  in (13) to yield 
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where Y is a function of z.  

The differential equation (14) is the master equation of the system (6)  (9). Two categories of solutions are possible for 
 and  

Case I:   

In this case (13) becomes the Euler-Cauchy equation with solution   
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In terms of the original variable x, where   and  are two arbitrary constants. 

Case II:   

With   the master equation (14) can be solved using the method of Frobenius.   As the point  is a regular singular 
point of (14), there exist two linearly independent solutions of the form of a power series with centre .  These solutions 
can be generated using the method of Frobenius. Therefore we can assume  
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In equation (15)  are the coefficients of the series and b is a constant. For a legitimate solution the coefficients  and the 
parameter b should be determined explicitly. On substituting (15) into (14), we obtain 
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The coefficients of the various powers of z must vanish. Equating the coefficient of   to zero we obtain  
  Since , or . Equating the coefficient of   to zero, we obtain 
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which is the recurrence formula, or difference equation, governing the structure of the solution. It is possible to express the 
general coefficient  in terms of the leading coefficient  by establishing a general structure for the coefficient by 
considering the leading terms. These coefficients generate the pattern 
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Now it is possible to generate two linearly independent solutions to (14) with the assistance of (15) and (16). For the parameter 
value b=0, the first solution is given by  
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For the parameter value , the second solution has the form 
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Thus the general solution to the differential equation (14), for the choices in (10) and (12) is given as 
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where  and  are constants. In terms of the original variable x, the function Y given above becomes  
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Where  Thus we have found the general series solution (17) to the differential equation (11). This 
solution is expressed in terms of a series with real arguments unlike the complex arguments given by software packages 

3. Solution in terms of elementary functions 

The general solution (18) is given in the form of a series which define special functions. It is possible for the general solution 
to be written in terms of elementary functions in closed form which is a more desirable form for the physical description of a 
relativistic star. If we introduce the transformation in (14), we obtain 
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which is a special case of  hypergeometric differential equation.  It is possible to obtain two linearly independent solutions to 
(18) in terms of hypergeometric functions and . These two functions are given by  
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It is well known that hypergeometric functions can be written in terms of elementary functions for particular parameter values. 
This statement is also true for these two hypergeometric functions. Consequently two sets of general solutions in terms of 
elementary functions can be found by restricting the range of values of   and  .Thus we can express the first category of 
solution to (14) as  
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For  

The second category of solution is given by  
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Therefore two categories of solutions in terms of elementary functions can be extracted from the general series in (17). The 
solution in (19) and (20) have a simple form and they have been expressed completely as combinations of polynomials and 
algebraic functions. This has the advantage of simplifying the investigation into the physical properties of a dense anisotropic 
star.  

Discussion 

We have found solutions to the Einstein field equations for an anisotropic matter by utilizing the method of Frobenius for an 
infinite series; a particular form for one of the gravitational potentials was assumed and the anisotropic factor was specified. 
These solutions are given in terms of special functions and hypergeometric functions. For particular values of the parameters 
involved it is possible to write the solutions in terms of elementary functions: polynomials and product of polynomials and 
algebraic functions. The anisotropic factor may vanish in the solutions and we can regain the isotropic solutions.  Thus our 
approach has the advantage of necessarily containing an isotropic neutral stellar solution found previously.  
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