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A B S T R A C T

Microbial transformation of thymoquinone (5-isopropyl-2-methyl-cyclohexa-2,5-diene-1,4-dione) (1) by sus-
pended cell-cultures of the plant pathogenic fungus Aspergillus niger resulted in the production of three meta-
bolites. These metabolites were identified as 5-isopropyl-2-methyloxepin-1-one (2), 3-hydroxy-5-isopropyl-2-
methylcyclohexa-2,5-diene-1,4-dione (3), and 5-isopropyl-2-methylbenzene-1,4-diol (4) by different spectro-
scopic methods. Metabolite 2 was found to be a new compound. Compound 4 showed a potent antioxidant
activity.

1. Introduction

Microorganisms have been used extensively for the hydroxylation of
terpenoids and steroids. Their enzymes catalyze reactions with high
regio- and stereo-specifity. Microorganisms have the ability to oxidize
terpenoidal compounds and produce derivatives of immense synthetic
and commercial importance. Therefore hydroxylation of a large number
of substances, including terpenoids, has been studied by employing a
variety of microorganisms [1]. In particular, Aspergillus niger has per-
formed a variety of reactions on terpenoidal compounds, including
oxidations [2], reductions [3], and lactonizations [4]. However, no
studies on the transformation of thymoquinone (1), a monoterpene, by
fungi have been reported in the literature.

Thymoquinone (2-Isopropyl-5-methyl cyclohexa-2,5-diene-1,4-
dione, C10H12O2) (1) was isolated from the seeds of Nigella sativa. It has
been shown to have anti-tumor activity against liver, prostate, colon,
breast, lung and pancreatic cancers [5–7]. Thymoquinone (1) has also
shown antioxidant [8], analgesic [9], and anticonvulsant properties
[10].

In continuation of our studies on the biotransformation of bioactive
compounds and drugs [11–16], we synthesized derivatives of thymo-
quinone (1) using a plant pathogenic fungus Aspergillus niger. Trans-
formation of 1 by A. niger resulted in the formation of three metabolites,
5-isopropyl-2-methyloxepin-1-one (2), 3-hydroxy-5-isopropyl-2-

methylcyclohexa-2,5-diene-1,4-dione (3), and 5-isopropyl-2-methyl-
benzene-1,4-diol (4). Metabolites 2–4 were tested for their antioxidant
activity in comparison to substrate 1, and ascorbic acid, and a potent
activity was observed in metabolite 2.

2. Experimental

2.1. General

Thymoquinone (1) was obtained from the Sigma-Aldrich. Silica gel
precoated plates (Merck, PF254; 20× 20, 0.25mm) were used for
chromatography. Silica gel (70–230 mesh, Merck) was used for column
chromatography. UV Spectra (in nm) were recorded in methanol with a
Hitachi U-3200 spectrophotometer. Infrared (IR) spectra were recorded
in KBr discs on a FT-IR-8900 spectrophotometer. 1H- and 13C-NMR
spectra were recorded in CDCl3 on a Bruker Avance-300 NMR spec-
trometer at 300 and 75MHz, respectively, with tetramethylsilane
(TMS) as the internal standard. Standard pulse sequences were used for
distortionless enhancement by polarization transfer (DEPT) and 2D-
NMR experiments. The chemical shifts (δ values) were reported in parts
per million, relative to TMS at 0 ppm. The coupling constants (J values)
were reported in Hertz (Hz). High resolution mass spectrometry was
performed using LC Mass Bruker Apex-IV mass spectrometer utilizing
an electrospray interface.
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2.2. Microorganisms and culture medium

Aspergillus niger (ATCC 16404) was purchased from the American
Type Culture Collection (ATCC), and grown on Sabouraud-4% potato
dextrose-agar (Merck) at 28 °C and stored at 4 °C. The medium for A.
niger was prepared by mixing the following ingredients into distilled
H2O (3.0 L): glucose (60.0 g), peptone (15.0 g), yeast extract (15.0 g),
KH2PO4 (15.0 g), and NaCl (15.0 g) [17].

2.3. Fermentation and extraction conditions for compound 1

The fungal medium was transferred into 250mL conical flasks
(100mL each), and autoclaved at 121 °C. Mycelia of A. niger were
transferred to all the flasks, and incubated at 28 °C for three days with
rotary shaking (128 rpm). After three days, compound 1 (1.00 g,
6.1 mmol) was dissolved in 40mL acetone, and added to each flask
(25mg/1.0 mL acetone). These flasks were placed on a rotatory shaker
(128 rpm) at 28 °C for fermentation. Parallel control experiments were
conducted which included an incubation of the fungus without sample
1, and another incubation of 1 in a medium without fungus. Time
course studies were carried out after every 24 h, and the degree of
transformation was analyzed by TLC. After 7 days, the culture medium
was filtered and extracted with ethyl acetate (9 L) in three portions. The
extract was dried over anhydrous Na2SO4, evaporated under reduced
pressure, and the brown gummy crude residue (1.5 g) was analyzed by
thin layer chromatography.

2.4. Isolation of transformed products

The crude extract was dissolved in chloroform: methanol (8:2 v/v),
absorbed on silica gel (2.0 g), and subjected to column chromato-
graphy. The eluent system consisted of gradient mixtures of chloroform
and methanol. Compounds 1 (50mg), and 2 (20mg) were eluted with
CHCl3, while compounds 3 (80mg), and 4 (280mg) were eluted in
CHCl3/MeOH (9.5:0.5 v/v).

5-Isopropyl-2-methyloxepin-1-one (2), oily. UV (MeOH): λmax (log ε)
244 nm (2.1). IR (MeOH): 2951, 1643, 1384, 1017 cm−1. 1H- and 13C-
NMR: Tables 1 and 2.

Hydroxythymoquinone (3-Hydroxy-5-isopropyl-2-methylcyclohexa-
2,5-diene-1,4-dione) (3), white solid, m.p.: 120–122 °C. UV (MeOH):
λmax (log ε) 248 nm (2.4). IR (MeOH): 3417, 2952, 1640, 1384,
1019 cm−1. 1H- and 13C-NMR: Tables 1 and 2.

5-Isopropyl-2-methylbenzene-1,4-diol (4), white solid, m.p.:
138–140 °C. UV (MeOH): λmax (log ε) 289 nm (2.3). IR (MeOH): 3340,
2966, 1426, 1382, 1035, 818, 738 cm−1. 1H- and 13C-NMR: Tables 1
and 2.

2.5. Stock and sample solutions

The stock solutions of the test compounds 1–4 (1.5 mg/mL) were
prepared in methanol, and serially diluted with the methanol to obtain

lower dilutions (1.95–250, 5.47–700 and 0.5–32.0 µg/mL for 4, 1, and
ascorbic acid, respectively).

2.6. Antioxidant activity (1,1-diphenyl-2-picryl-hydrazyl (DPPH) free
radical scavenging activity)

Antioxidant activity of the test samples and the standard was as-
sessed based on radical scavenging effect against stable DPPH free ra-
dical, using a modified method [18]. DPPH solution (0.002% w/v) was
prepared in methanol. Ascorbic acid was used as the standard in solu-
tions ranging between 0.5 and 32 μg/mL. 1mL of this solution was
mixed with either 1mL of sample solution or the solution of standard to
be tested separately. These solution mixtures were kept in the dark for
20min, and optical density was measured at 517 nm using a spectro-
photometer against methanol. The blank was used as 1mL of methanol
with 1mL of DPPH solution (0.002%). The optical density was recorded
and percent of inhibition was calculated using the formula given below
[19]:

% Inhibition of DPPH activity=A–B/A×100, where A is optical
density of the blank, and B is optical density of the sample.

3. Results and discussion

Screening scale experiment showed that Aspergillus niger (ATCC
16404) has the capacity to transform compound 1 into its derivatives,
thus a large scale experiment was performed. Incubation of thymo-
quinone (1) with A. niger yielded three metabolites 2–4 (Fig. 1). Me-
tabolite 4 was obtained as a major product with 28.0% yield, while
compounds 2, and 3 were obtained as minor products with 4.9 and
7.3% yields, respectively. A time course analysis of the transformation
of 1 revealed that metabolite 4 was formed after 24 h of incubation,
while metabolites 2, and 3 were detected only after 72 h. Structures of
the metabolites were identified through comparative spectroscopic
studies with thymoquinone (1).

The HRESI-MS of metabolite 2 revealed a protonated molecular ion
peak [M+H]+ at m/z 167.1028, refers to the formula C10H14O2+H
(calc. 167.1072), 2 a.m.u. higher than 1. The IR spectrum showed the

Table 1
1H NMR data of compound 1, and its metabolites 2–4 (300MHz; CDCl3).

C. No. 1 2 3 4

1 – – – –
2 – – – –
3 6.59 (1H, q, J=1.6 Hz) 7.53 (1H, d, J=8.9 Hz) – 6.64 (1H, s)
4 – 7.71 (1H, d, J=9.0 Hz) – –
5 – – – –
6 6.52 (1H, d, J=1.2 Hz) 4.22 (2H, m) 6.46 (1H, s) 6.55 (1H, s)
7 2.04 (3H, d, J=1.6 Hz) 0.93 (3H, s) 1.94 (3H, s) 2.18 (3H, s)
8 3.03 (1H, d, J=6.8 Hz, J=1.2 Hz) 2.14 (1H, m) 3.02 (1H, m) 3.14 (1H, m)
9 1.13 (3H, d, J=6.8 Hz) 0.99 (3H, d, J=6.7 Hz) 1.15 (3H, d, J=6.9 Hz) 1.22 (3H, d, J=6.9 Hz)
10 1.13 (3H, d, J=6.8 Hz) 0.99 (3H, d, J=6.7 Hz) 1.15 (3H, d, J=6.9 Hz) 1.22 (3H, d, J=6.9 Hz)

Table 2
13C NMR data of compound 1, and its metabolites 2–4 (300MHz; CDCl3).

C. No. 1 2 3 4

1 188.5 167.8 188.2 147.7
2 145.1 132.5 151.4 121.6
3 133.8 130.9 116.7 113.0
4 187.4 128.8 183.2 146.3
5 154.9 154.9 150.4 133.1
6 130.3 68.2 132.4 117.7
7 21.4 11.0 7.9 15.4
8 26.5 26.5 26.7 26.8
9 15.3 14.1 21.3 22.7
10 15.3 14.1 21.3 22.7

Multiplicities were determined by DEPT experiments.
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Fig. 1. Biotransformation of thymoquinone (1) by Aspergillus niger.

Fig. 2. HMBC ( ) and COSY ( ) correlations in metabolite 2.

Scheme 1. Proposed pathway for the synthesis of new metabolite 2.

Fig. 3. HMBC ( ) correlations in metabolites 3 and 4.
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presence of a lactone carbonyl functionality (1643 cm−1). The 1H NMR
spectrum showed a methylene protons signal at δ 4.22 (m), while the
13C NMR spectrum showed a methylene carbon at δ 68.2, along with
disappearance of C-6 olefinic methine signal at δ 130.3, in comparison
to compound 1. Moreover the upfield shifts of C-1 (δ 167.8), and C-4 (δ
128.8) and disappearance of keto carbonyl carbons at C-1 (δ 188.5),
and C-4 (δ 187.4), in comparison to compound 1, suggested the con-
version of ketone into a lactone along with the reduction of C-4 car-
bonyl into a methine carbon. HMBC spectrum of metabolite 2 showed
correlations of H2-6 (δ 4.22) with C-8 (δ 26.5) and H-8 (δ 2.14) with C-6
(δ 68.2) (Fig. 2) which supported the oxidative cleavage of C-6 – C-1
bond (Baeyer–Villiger type oxidation). COSY 45° spectrum showed
correlations of H-3 with H-4 (Fig. 2) which supported the reduction of
C-4 carbonyl. The structure of compound 2 was thus deduced as 5-
isopropyl-2-methyloxepin-1-one (Scheme 1). Compound 2 may arise
from Baeyer–Villiger type oxidation of partially reduced benzoquinone,
followed by elimination of water (Scheme 1).

The IR spectrum of metabolite 3 showed the presence of OH func-
tionality (3417 cm−1). The 1H NMR spectrum of compound 3 was si-
milar to that of 1 but the 13C NMR spectrum showed an additional
quaternary carbon signal at δ 116.7, and the disappearance of methine
C-3 (δ 133.8), in comparison to compound 1, which indicated the hy-
droxylation at C-3. HMBC spectrum showed correlations of H3-7 (δ
1.94) with C-3 (δ 116.7) suggested that the hydroxylation occurred at
C-3 (Fig. 3). These data supported the structure of compound 3 as 3-
hydroxy-5-isopropyl-2-methylcyclohexa-2,5-diene-1,4-dione.

The IR spectrum of metabolite 4 showed the presence of OH func-
tionality (3340 cm−1). The 13C NMR spectrum showed quaternary
carbon signals at δ 146.3 and 147.7 along with disappearance of C-4 (δ
187.4), and C-1 (δ 188.5) keto carbonyl signal, in comparison to
compound 1. HMBC Spectrum of metabolite 4 showed correlations of
H-3 (δ 6.64) with C-4 (δ 146.3), and H-6 (δ 6.55) with C-1 (δ 147.7)
which supported the conversion of 1 to p-disubstituted phenol (Fig. 3).
The structure of compound 4 was deduced as 5-isopropyl-2-methyl-
benzene-1,4-diol.

Metabolite 4 was tested for its antioxidant activity in comparison to
1 and ascorbic acid, and a potent antioxidant activity was observed
(Fig. 4).

In conclusion, biotransformation of thymoquinone (1) by A. niger

proved to be an effective procedure for lactonization and hydroxylation
of this monoterpene. Compound 2 was reported for the first time,
whereas metabolite 4 was obtained as a major product. This procedure
can be used to synthesize new derivatives of monoterpene with inter-
esting biological activities.
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