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A B S T R A C T   

The rate of people getting affected by Oral cancer in Sri Lanka is growing rapidly since the root cause of such 
cancer, betel quid chewing is tightly coupled with the tradition of the country. The five-year survival rate of the 
disease is also pretty low as it is typically detected at advanced stages. This urges a comprehensive study on the 
marker genes of oral cancer for the successful therapeutic revisions that would potentially identify cancer in its 
early stages. Further, the identification of molecular subclasses can assist in individualizing the treatment for this 
type of fatal disease. This study uses the bioinformatics analysis on the gene expression dataset of 56 oral cancer 
patients from Sri Lanka and the United Kingdom to identify the differentially expressed genes where these genes 
are later clustered and classified into molecular subclasses. Molecular subclasses are found by clustering the 
genes that stratify together and the stages were identified with the use of gene co-expression networks. Five 
molecular subclasses of oral cancer were identified and the genes associated with each tumour stage. Out of the 
genes that are clustered and classified, TAGLN2, CCND2 and CCL8 were well-known tumour suppressor genes 
and GPX3, GRN and ITGB4 genes are involved in several carcinomas. Putative marker genes of Oral Squamous 
Cell Carcinoma were identified which could facilitate the medical practitioner in the early detection of oral 
cancer and also in the improvement of treatment methods.   

1. Introduction 

Cancer is one of the leading genetic diseases across the globe that 
results from both inherited and acquired changes in DNA mostly. In 
particular, Oral cancer occupies a prominent place in most common 
cancers in Sri Lanka in the years 2001–2008 [4]) as it is one of the 
commonest cancers amongst men. Further, deaths from Oral cancer 
accounts for nearly 12.8% of all cancers in the country. Oral squamous 
cell carcinoma [15]. National Cancer Control Programme of Sri Lanka 
has ranked oral cancer as the leading cause of death as the statistics 
proved that oral cancer possesses the highest crude rate of 17.0 per 100, 
000 populations [15]. In Sri Lanka, the use of betel quid and smoking are 
considered in accounting for inclining the rate of oral cancer [2]. Despite 
the considerable advancements in the medical field, yet, the five-year 
survival rate (62%) of oral cancer is amongst the lowest of all the 
major cancers in humans [5]. 

The prime cause of this lower survival rate is that nearly 90% of the 
oral pharyngeal cancers are diagnosed only at the advanced stages. 
Further, The National Cancer Control Programme (NCCP) of Sri Lanka 
targeted to lower the effect of oral cancer by 15% at least by the end of 
the next decade. They also believed that this could be achieved mainly 
through the primary prevention and early detection of oral cancer. On 
the other hand, the therapeutic strategies of Oral Squamous Cell Carci-
noma (OSCC) are also to be revised through the identification of po-
tential molecular subclasses in oral cancer which can individualize the 
treatment to the OSCC patients. 

The DNA microarray encompasses most of the human genome 
transcript. This has been a promising technology over the years [10] for 
successful prognosis and the unveiling of potential molecular subclasses 
of cancers. The higher dimensionality of such data to reveal the outcome 
related information has demanded the use of computational methods 
over manual interpretation. 
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The present high-throughput technologies have created vast poten-
tials for diagnostics and therapies for many cancers. Researchers were 
successful in using integrated network analysis and logistic regression to 
reveal the stage-specific genes of OSCC [18]. Further, Gene 
co-expression networks have been playing a vital role in many of the 
bioinformatics analyses of microarray gene expression data especially in 
revealing the association of gene expression with phenotypic traits. 

There have been consistent researches that were aimed to gain 
insight into the subclasses of cancers as well. A meta-analysis of gene 
expression data has discovered six subclasses of Head and Neck Cancer 
Squamous Cell Carcinoma (HNSCC) that lead to new therapeutic ap-
proaches [3]. 

Several studies have been undertaken to critically study the differ-
entially expressed genes of oral cancer. However, much effort has not 
been pledged to identify the marker genes of OSCC that have undergone 
both classifications based on their molecular subclasses and their 
tumour stages. Thus, this study focuses to develop such a methodology. 
This research study focuses to contribute to the medical community by 
lowering the expenditures for laboratory scanning and a series of med-
ical tests to a certain extent. Further, the research has also aided in the 
identification of OSCC at an early curable stage by clearly distinguishing 

the genes between the stages. Thus, this methodology presented here is a 
good initiative in such implementation especially in the context of Sri 
Lanka. 

2. Methods and materials 

The gene expression data have been analysed using R programming 
tools (http://www.R-project.org) and Bioconductor packages [9] to 

Fig. 1. Schematic representation of the applied methodology.  

Table 1 
Details of the dataset used.  

Details Dataset 

Identifier 
Initial Number of samples 

GSE51010 
56 (tumour: 48 + Normal: 8) 

Samples left after 
preprocessing 

56 (tumour: 48 + Normal: 8) 

Affymetrix® Platform 
(Normal & Tumour) 

Affymetrix® Human Genome U133 Plus2.0 Array & 
Affymetrix® Human Genome Focus Array  
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identify the genes associated with the molecular subclasses of oral 
cancer and their respective stages. The association of Bioconductor with 
R statistical environment, provide a better companion for the analysis 
and comprehension of high-throughput genomic data. The schematic 
representation of the methodology applied is provided in Fig. 1. The 
detailed explanation of each of the steps are as follows: 

2.1. Data collection and normalization 

Gene Expression Profiles of OSCC concerning Sri Lankan patients 
were specifically obtained from National Center for Biotechnology In-
formation (NCBI) Gene Expression Omnibus (GEO) database. The sam-
ples were obtained from a study [19] comprising both case and healthy 
control samples to identify disease-specific signals. 

The dataset comprised 56 samples of which 48 were oral cancer 
patients and eight were healthy individuals as shown in Table 1. This 

data has been selected in particular, as it possessed the samples from Sri 
Lanka and phenotypic traits were also well defined. Out of the 48 pa-
tients, Sri Lankans were 21. Out of eight healthy individuals, Sri Lankans 
were three. Clinical information of the patients from Sri Lanka and the 
UK are provided in Table 2 and Table 3 respectively. The array datasets 
were of HGU133 plus 2.0 and HGU Focus Array that were from the 
widely used Affymetrix platforms. The studies comprised of well-defined 
phenotypic descriptions of cancer stages. 

Bioconductor packages such as GEOquery, Biobase, affy were used to 
retrieve and process the data in the working environment. The re-
searchers have obtained [19], appropriate ethical approval from the 
respective authorities (South Birmingham Research Ethics Committee 
0769, UK and Kandy General Hospital and University of Peradeniya 
Ethical Committee, Sri Lanka) for English and Sri Lankan samples. 

The datasets were imported and processed into R (version 3.2.5) 
using Bioconductor packages such as GEOquery tools and affy package 

Table 2 
Patients and tumour related factors in Sri Lankan cohort of oral cancers [19].  

Study 
No 

Sex Age Site Pathological 
Staging 

Differentiation Early 
Recurrence 

Invasion Smoking Heavy Alcohol 
Consumption 

BALT Lymphocyte 
Infiltration 

OCS 
001 C 

M 59 Buccal T4N2bMx Moderate Yes No Smoker No None Moderate 

OCS 
003 C 

F 72 Alveolus T4N2bMx Poor No No None No Oral 
Snuff 

Dense 

OCS 
004 C 

F 67 Alveolus T4N0Mx Moderate Yes Yes None No BALT Moderate 

OCS 
006 C 

F 53 Tongue T1N0Mx Moderate No No None No None Dense 

OCS 
007 C 

F 67 Palate T4N0Mx Well/Moderate No No Smoker No None Dense 

OCS 
008 C 

F 67 Palate T4N0Mx Well/Moderate No No Smoker No None Dense 

OCS 
011 C 

F 65 Alveolus T4N0Mx Moderate Yes No None No None Moderate 

OCS 
012 C 

F 49 Tongue T1N0Mx Well/Moderate No No Smoker No None Moderate 

OCS 
013 C 

F 72 Tongue T4N2aMx Poor Yes No Smoker Yes None Moderate 

OCS 
014 C 

M 43 FOM T1N0Mx Moderate No No Smoker No None Moderate 

OCS 
015 C 

M 46 Tongue T4N2bMx Poor/Moderate No Yes Smoker Yes None Moderate 

OCS 
016 C 

M 51 Tongue T4N0Mx Moderate Yes Yes None No None Moderate 

OCS 
020 C 

F 73 Alveolus T2N0Mx Well No No None No Oral 
Snuff 

Moderate 

OCS 
022 C 

M 58 FOM T2N0Mx Poor/Moderate No No Smoker Yes None Moderate 

OCS 
024 C 

M 70 Alveolus T2N2bMx Moderate No No Smoker No None Dense 

OCS 
025 C 

F 68 Alveolus T2N1Mx Moderate Yes Yes Smoker No None Moderate 

OCS 
026 C 

F 79 Buccal T2N0Mx Well No No None No None NA 

OCS 
027 C 

M 37 FOM T1N0Mx Moderate No No Smoker Yes None Mild 

OCS 
029 C 

M 66 FOM T2N0Mx Moderate No No Smoker No None Moderate 

OCS 
031 C 

M 67 FOM T4N0Mx Moderate Yes No Smoker Yes None Mild 

OCS 
032 C 

M 60 Retromolar T2N0Mx Moderate No Yes Smoker No None Moderate  
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respectively. Then, the data were normalized using the Robust Multi- 
Array Average (RMA) normalization technique to increase the quality 
and to remove the technical variations. This process removed the local 
artifacts, array effects and combined probe intensities across the arrays. 

2.2. Cross-Platform normalization 

The samples of cancer patients were analysed through Affymetrix 
Human Genome Focus Array (GPL 201) and the samples of individuals 
were analysed through Affymetrix Human Genome U133 Plus2.0 Array 
(GPL570). Since the arrays are from different Affymetrix platforms, 
Linear Models for Microarray Analysis (LIMMA) Bioconductor package 
[12] has been used to assess the availability of technical biases, arti-
factual differences and batch effects. Hence, a Multi-Dimensional 
Scaling Plot was drawn to witness the non-biological experimental 
variation or the batch effect as in Fig. 2. 

As the samples contained batch effect, the Bioconductor package 
inSilicoMerging [24] was used to merge the two platforms. Though the 
package consists of Six merging algorithms, the COMBAT [25] algorithm 
was used in particular to remove the unknown batch effect. The 
normalization left out the dataset with 8973 genes obtained through 
common identifiers. 

2.3. Noise removal 

Since the merged dataset had a high probability of having noises and 
outliers, the expression sets were assessed using biosvd [6] Bioconductor 
package. The expressions with steady-state gene expression and 
steady-scale variances were considered to be noises. Removal of such 

noises [1] enables meaningful comparison of gene expression across 
different arrays in different experiments. 

At first, the genes x sample space was transformed into a 
space of eigengenes x eigenarrays . The entropy was calculated and 
the bar plot for the merged expression set was plotted as shown in Fig 3. 

The allLine graph and eigenfeature heatmap were also plotted for the 
merged dataset to visualize the available noises. it was inferred that the 
underlying processes were manifested by weak perturbations of the 
steady-state of expression from these graphs. Hence, the exclude function 
of the biosvd [6] package was used to filter the steady-state gene ex-
pressions as well as the steady scale variance. The comparative heat-
maps before and after the noise removal are depicted in Fig. 4. a) and 
Fig. 4. b) respectively. 

2.4. Identification of differentially expressed genes 

The reliable method for the identification of differentially expressed 
genes is the evaluation of the log-ratio between conditions and consid-
erations of genes that differ by more than a random cut-off value called 
the delta value [18]. At first, the supervised analysis was performed on 
the gene expression set using the samr (Significance Analysis of Micro-
arrays) [26] package. 

The set of differentially expressed genes were retrieved with the fold- 
change of ±1.5 and FDR (False Discovery Rate) of 0.5% from the list of 
significant genes obtained as shown in Fig. 5. Later, the identified over- 
expressed and lower expressed genes (together known as differentially 
expressed genes) were converted to gene identifiers using Annota-
tionDbi andhgu133plus2.db. At this stage, the control genes were also 
filtered using the genefilter [8] package. 

Table 3 
Patients and tumour related factors in the UK cohort of oral cancers [19].  

Study 
No 

Sex Age Site Pathological 
Staging 

Differentiation Early 
Recurrence 

Invasion Smoking Heavy Alcohol 
Consumption 

BALT Lymphocyte 
Infiltration 

KC01 M 72 Soft Palate T2NxMx Well No No Yes No BALT Moderate 
KC02 M 50 Retromolar T2NxMx Moderate Yes No Yes No BALT Mild 
KC04 M 66 Buccal T1NxMx Well/Moderate No No No No BALT Moderate 
KC07 M 50 Alveolus T2NxMx Moderate No No No No BALT NA 
KC09 F 54 Tongue T1NxMx Well No No No No BALT Mild 
KC13 M 73 Buccal T2NxMx Well No No No No BALT NA 
KC15 F 40 Tongue T2NxMx Moderate No No No No No NA 
KC16 F 71 FOM T2NxMx Moderate No No Yes No BALT Mild 
KC17 M 48 Alveolus T2NxMx Well No No Yes No BALT NA 
KC19 M 76 Buccal T2NxMx Moderate No No Yes Yes BALT Mild 
KC20 M 76 FOM T1NxMx Well No No Yes Yes BALT Moderate 
KC21 F 56 Retromolar T2NxMx Well No No No No BALT Moderate 
KC24 F 55 Buccal T1NxMx Moderate No No No No BALT NA 
KC25 M 74 Buccal T2NxMx Moderate No No Yes No BALT NA 
KC26 F 85 Alveolus T2NxMx Moderate No No No No BALT Mild 
KC29 M 55 Buccal T2NxMx Well No No Yes Yes BALT Mild 
KC31 M 95 Buccal T2NxMx Well/Moderate No No No No BALT Moderate 
KC32 M 52 Buccal T2NxMx Well No No Yes Yes BALT Mild 
KC38 M 51 Alveolus T2NxMx Moderate No No Yes Yes BALT Dense 
KC39 M 64 Alveolus T3NxMx Moderate No No Yes Yes BALT Mild 
KC41 M 82 Tongue T3NxMx Moderate No No Yes No No Mild 
KC44 M 42 Palate T3NxMx Well No No No No BALT Mild 
KC45 M 58 Tongue T2NxMx Moderate No No Yes Yes BALT Mild 
KC46 M 38 Tongue T2NxMx Moderate No No Yes Yes BALT Dense 
KC47 M 50 Buccal T2NxMx Well No No No No BALT NA 
KC51 M 78 Buccal T2NxMx Moderate No No No No BALT NA 
KC53 M 60 Buccal T3NxMx Well No No Yes No BALT NA  
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Fig. 2. A multidimensional scaling (MDS) plot of the merged gene expression data. a) all samples are clustered by affymetrix platforms inside the MDS space without 
removal of the batch effect. b) With intra-platform batch adjustment, the samples are intermixed. 
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2.5. Identification of molecular subclasses 

Identification of molecular subclasses can substantially assist the 
oncologist to revise the therapeutic strategies to individualize the 
treatments. Consensus Clustering has gained wide popularity in cancer 
genomics as it could uncover the potential molecular subclasses of 
cancers [20]. ConsensusClusterPlus package was used to cluster the sig-
nificant genes to identify the molecular subclasses of oral cancer. 

The number of clusters starting from two was gradually increased by 
one until an optimal range was identified. The respective consensus 
matrix is presented in Fig. 6. As there was no significant difference after 
Six, the range was limited to Six. Clusters ranging from Two to Six were 
plotted and from the consensus Cumulative Distribution Function (CDF) 
curve analysis obtained, the optimal cluster was chosen when k = 5. The 
delta area, consensus CDF and the tracking plot are illustrated in Fig. 7. 

2.6. Identification of stage-specific genes 

Gene co-expression networks have been playing a vital role in many 
of the bioinformatics analysis of microarray gene expression data. A 
gene co-expression network is typically built based on the similarity 
matrix between gene expression profiles of many genes over a set of 
samples or experimental conditions. The set of genes showing a high 
correlation i.e. having a similar pattern of expression tend to have 
similar functionalities and their transcript levels rise and fall together 
across samples [17]. This feature in particular is useful for revealing the 
association of gene expression with phenotypic traits. 

The differentially expressed genes and their relative expressions 

were separated from other genes. Since the study is aimed to categorize 
between the early stage-specific genes and later stage-specific genes, the 
datasets were preliminarily categorized into two based on their tumour 
stages available in the clinical data. The correlation between the genes 
was calculated using Pearson’s Correlation Coefficient separately. The 
results are presented in Tables 4 and 5. 

CoExpress software [16] has been used to obtain the number of 
subnetworks for varying threshold values of the similarity matrix. The 
similarity matrix was based on Pearson’s Correlation Coefficient. This 
was plotted into a bar chart as shown in Fig. 8. Since the number of 
subnetworks decreased when proceeded to pass 0.8, the cut-off was set 
to 0.8. The plugin ExpressionCorrelation of Cytoscape software [22] 
computes a similarity network from either the genes or conditions in an 
expression matrix and it has been used to obtain the gene co-expression 
network in this study. The gene co-expression networks were built 
separately for early stage-specific genes and later stage-specific genes 
based on the significant correlation amongst them as indicated in Figs. 9 
and 10 respectively. 

2.7. Pathway analysis 

Pathway analysis is one of the crucial steps in a bioinformatics 
analysis since it has the potential to identify important proteins in one 
pathway. The popular DAVID (The Database for Annotation, Visuali-
zation, and Integrated Discovery) [11] tool has been used to identify the 
most affected molecular and cellular functions, diseases and disorders, 
canonical pathways, and the transcriptional regulators [19] from 
amongst the genes that have been classified based on the subclasses and 

Fig. 3. Bar plot with all eigenfeatures.  

A.R.F. Shafana et al.                                                                                                                                                                                                                           



Cancer Treatment and Research Communications 27 (2021) 100320

7

Fig. 4. Comparative heatmaps before and after the noise removal. a) This heatmap shows that the availability of steady-state gene expressions across samples 1, 54, 
55, and 56. b) The sorted heatmap after removing the steady state gene-expression and steady- scale variance. 
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stages respectively in the previous steps. 
The identified genes were tested against databases and the following 

interpretations were made. A previous research [21] revealed that there 
is a significant impact on the weight of the newborn baby born to the 
women who chew betel during pregnancy. This particular research 
investigated this hypothesis using 310 pregnant women and revealed 
that there is birth weight reduction in those who chew betel nut during 
pregnancy. This may be accredited to the SPINT1 gene as it plays a major 
role in placenta development, embryonic organ development. 

According to our study, Integrin (ITGB4) has been identified as one 
of the under-expressed genes in OSCC patients. The principal role of 
Integrin in the human body is its contribution to focal adhesion that is 
mandated for the transmission of regulatory signals and mechanical 
forces between the extra-cellular matrix and the interacting cell. How-
ever, the arecoline present in the areca nut, chewed with the betel, de-
teriorates the stability of such matrix and result in the accumulation of 
extracellular matrix causing a barrier in transmission [23]. Thus, the 
cellular signals for White Blood Cells (WBC) to repair the damaged tis-
sues are also not transmitted and leads to the lack of immunity in the 
human body. 

On the other hand, Serglycin (SRGN) is a down-regulated gene for 
patients with OSCC. Serglycin gene is one of the important genes that 
have the cellular function of apoptosis, the programmed cell death [14]. 

Eugenol is a compound that triggers apoptosis in oral cancer patients 
and it is one of the essential components present in betel leaf. Thus, the 
general cyclic process of the development of cells is disturbed and the 
dysfunctional cells also exist. 

The cytotoxicity in the human body can be inhibited by glutathione 
metabolism, which is the key function of Glutathione peroxidase 2 
(GPX2). The particular gene is a master anti-oxidant and assists in the 
detoxification process. However, the up-regulation of this particular 
gene lowers the immune function and also makes people susceptible to 
infection. The root cause that induces the cytotoxicity in humans is again 
the arecoline of the areca nut. 

2.8. Validation and testing 

The obtained results were tested against the previously identified list 
of marker genes from the Catalogue of Somatic Mutations in Cancer 
(COSMIC) [7] database and the NCBI database. Most of the identified 
genes were related to OSCC and certain other carcinomas as well. It has 
been found that most of the genes coincided with the previously iden-
tified marker genes of carcinomas. 

Out of the genes classified based on subclasses and the tumour stages, 
TAGLN2, CCND2 and CCL8 were well-known tumour suppressor genes. 
Further, GPX3, GRN, and ITGB4 like genes are involved in several 

Fig. 5. The plot of differentially expressed genes for the selected delta value.  
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Fig. 6. Consensus matrix of the clusters a) Consensus matrix legend b) when k = 2 c) when k = 3 d) when k = 4 e) when k = 5 f) when k = 6.  
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Fig. 7. Identification of Clusters a) The plot representing the delta area of varying number of clusters b) Their respective Cumulative Distribution Function and c) 
The tracking plot of clusters. 
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carcinomas. 

3. Results 

The differentially expressed genes were first categorized according to 
the molecular subclasses and later, they were classified against their 
tumour stages such as early stage and later stage. The differentially 
expressed genes obtained from the study were tested against the results 
obtained from the previous research [19] which is also based on the 
same microarray data. Many of the differentially expressed genes 
identified were similar and this study has identified few unique marker 
genes as well. Table 4 provides a tabular view of up-regulated and 
down-regulated genes identified. 

Further, Consensus Clustering revealed that there could be five mo-
lecular subclasses in the gene expression data used for this study. Hence, 
the differentially expressed genes were categorized into five molecular 
subclasses. The genes were also classified based on their tumour stages. 
Table 5 provides a concise view of the genes that have undergone 

classification based on both factors. 

4. Discussion 

There are plenty of conventional therapeutic approaches available 
for the treatment of oral cancer such as altered resection, chemother-
apies, and radiotherapies. However, the impacts that these treatments 
imprint on the patients are yet destroying the wellbeing and quality of 
their life [13]. Hence, the necessity in revising or modifying the existing 
approaches is paramount to improve health outcomes as well as sur-
vival. Since the primary reason for the low survival rate is often claimed 
as the detection of oral cancer at a later stage, this study proposes a 
methodology that could expedite the detection of oral cancer relatively 
earlier by reducing the time as well as the money spent in many 
screening tests done for detection, thus leads to the detection at an 
early-curable stage individually. Further, the classification of oral cancer 
into five molecular subclasses could help to revise the therapeutic 
measures such that the treatments could be individualized. This 
approach is promising since the co-expression networks proved that 
most of the genes are differentially expressed at an early stage rather 
than later stage. 

The sensitivity to drugs could be tested using the Genomics Drug 
Sensitivity Project to the putative genes identified through this research, 
such that it can be used to identify potential associations with drug 
sensitivity. The successful implementation could output a more robust 
molecularly defined subtype and stage classified genes of OSCC which 
can improve patient selection and pave the way to the development of 
appropriate therapeutic strategies for OSCC. 

Table 4 
Comparative analysis of differentially expressed genes with previously pub-
lished results.   

Genes that comply with 
previously published 
results 

Genes that do not comply with 
previously published results 

Down- 
regulated 
genes 

DDX1 
IFIH1 
CCT6A 
UCHL3 
NAMPT 
ERAP2 
MPZL2 
RASGRP1 
F3 
IFI44L 
PTPRC 
CLEC2B 
CD24 

GCH1 
NMI 
IFIT1 
DDX58 
LAP3 
GBP1 
SAMSN1 
RGS2 
IFI44 
CCND2 
CCL8 
IVNS1ABP 
IFITM1 
SRGN 
CXCL8 
CXCL9 
WARS 
TPD52  

Up-regulated 
genes 

CAPNS1 
GRN 
CTSD 
GPX3 
SPINT1 
ACTA2 
H1FX 
CRIP1 
AP2M1 
SH3BGRL3 
CST3 
TAGLN2 
CYP1B1 
KRT76 
APOD 
HSPB1 
DES 
P4HB 
CLIC3  

ITGB4 
GPX2 
TYMP   

Table 5 
List of Clustered and Classified genes.  

Cluster number Early Stage Later Stage 

Cluster 1 GBP1 
DDX1 
CCT6A 
TPD52 
CCL8 
SRGN 
RGS2 
PTPRC 
GGH 
AIM2 
WARS  

CCND2 
WARS 

Cluster 2 GPX2 
ITGB4 

GRN 
ITGB4  

Cluster 3 ACTA2 
CST3 
CTSD 
CRIP1 
IFIH1 
ERAP2  

CYP1B1 
CRIP1 

Cluster 4 TAGLN2   

Cluster 5 P4HB   
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Fig. 9. Gene co-expression networks built amongst the early stage specific-genes.  

Fig. 8. Bar chart depicting the variability of number of clusters for varying threshold.  
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5. Conclusion 

The candidate marker genes of OSCC were identified and classified 
based on molecular subclasses and the stages OSCC. Five molecular 
subclasses of oral cancer have been identified and the results were 
further clustered as genes associated in early-stage and later stage of 
OSCC. This would be helpful in revising the therapeutic strategies based 
on further analysis of impact level and survival rate of each of the 
subtypes identified. Hence, a clinician might be able to design and 
implement a targeted drug therapy which would be more effective and 
practically feasible. The revision of therapeutic measures based on this 
classification could improve the wellbeing and quality of patients’ life. 
Also, it has been discovered that most of the genes are differentially 
expressed at the early stages. Thus, it could be concluded that further 
study on this could help to detect oral cancer at an early curable stage as 
well as to design and develop a suitable treatment protocol 
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