Analysing the volatility of all share price index using ARCH family models

A.M. P. S. Kumara^a*, A. Jahufer^b

Department of Mathematical Sciences, Faculty of Applied Sciences, South Eastern University of Sri Lanka

(^apriyanthaaththanayaka100@gmail.com, ^bjahufer@seu.ac.lk)

Keywords: ADF, ARCH, ASPI, GARCH, volatility.

Introduction

The main objective of this research study is to analyze the volatility of all share price index using the ARCH family models.

Volatility is one of the forecast important concepts within the whole of finance. Generally, individuals tend to think about volatility as a sign of market disruption whereby securities aren't being priced fairly and therefore the capital market isn't functioning evidently. This study objective is modeling volatility of Colombo stock exchange ASPI daily data. ARCH family models are used for modeling observed statistics. Developed four ARCH family models and we were found that the best and appropriate model is GARCH (1, 1) model. It can be used to model the volatility of ASPI and can get some important decisions about changing of the stock market index.

ARCH family models are frequently used for modeling the volatility of stock markets. Most of the articles in this area of the literature deal with the analysis of the price index volatility or with the forecast of the price index.

Forecasting and volatility modeling is not very common for the Sri Lankan concept. It is a remarkable attempt to model volatility with a strong focus on Sri Lanka. GARCH (1, 1) model was identified as the best model for measuring the volatility of the ASPI return series [2]. Inflation and interest rate are the two significantly influencing macroeconomic factors on the stock market volatility of the emerging economy of Sri Lanka [1].

Methodology

1. Data: The observation period goes from 1st of January 2015 to 21st of May 2021. 1500 observations are obtained from Colombo Stock Exchange, price index daily data. Then obtained natural logarithm of ASPI. Return of stock

market index has been computed using the log difference of price, that is $r_t = ln (P_t) - ln (P_{t-1})$. **2. ARCH (q) model.** The ARCH method for modeling volatility has been introduced by Engle.

 $\sigma_t^2 = \omega + \sum_{i=1}^q \alpha_i u_{t-i}^2 \quad u_t \mid \Omega_t \sim iid \ (0, \ \sigma_t^2)$ Where, $\omega > 0, \ \alpha_i \ge 0, \ i = 1, 2, \dots, q$

3. GARCH (1, 1) model. Bolerslev introduced a more general structure in which the variance model looks more like an ARMA than an AR and called this a GARCH process.

 $\begin{aligned} \sigma_t^2 &= \omega + \alpha \sigma_{t-1}^2 + \beta u_{t-1}^2 \quad u_t \mid \Omega_t \sim iid \ (0, \ \sigma_t^2) \\ \text{Where, } \omega &> 0, \ \alpha \geq 0, \ \beta \geq 0, \ \alpha + \beta < 1 \end{aligned}$

4. EGARCH (1, 1) model. Nelson proposed the EGARCH process and capture the leverage effect of stocks on the financial market. The leverage effect is exponential rather than quadratic. This ensures that the estimates are non-negative.

Log $(\sigma_t^2) = \omega + \alpha \frac{|\varepsilon_{t-1}|}{|\sigma_{t-1}|} + \gamma \frac{\varepsilon_{t-1}}{\sigma_{t-1}} + \beta (\sigma_{t-1}^2)$ Where, ω = constant, α = ARCH effect, γ = leverage parameter, β = GARCH effect.

5. TGARCH (1, 1) model. The threshold GARCH model was introduced by Zakoin and Glosten, Jaganathan and Runkle proposed the TGARCH process for asymmetric volatility structure.

$$\begin{split} \sigma_t^2 &= \omega + \alpha u_{t-1}^2 + \gamma D_{t-1} u_{t-1}^2 + \beta \sigma_{t-1}^2 \quad \text{Where, } \gamma \\ &= \text{leverage term, } \gamma > 0 - \text{asymmetry, } \gamma = 0 - \\ \text{symmetry, } D &= \{ _{0,u_{t-1} \, \geq \, 0}^{1,u_{t-1} \, < \, 0} \,. \end{split}$$

Results and Discussion

1. Descriptive statistics. The basic analysis of ASPI and time series plot are shown in table 1 and figure 1.

From figure 1, it can be easily seen that ASPI data has been decreasing and increasing over time. Thus, it is obvious that the series is non-stationary.

10th Annual	Science	Research	Session	<i>2021</i> ,	FAS,	SEUSL
-------------	---------	----------	---------	---------------	------	-------

Table 1. Descriptive statis	tics of ASPI data.
Statistical Measures	Values
Mean	6339.427
Median	6373.960
Maximum	8812.010
Minimum	4247.950
Standard Deviation	639.1977
Skewness	0.030129
Kurtosis	3.509746
Jarque-Bera	16.46702
Probability	0.000266
Observations	1500.00

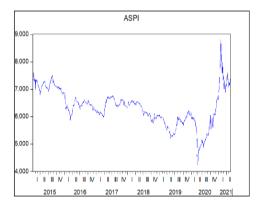


Figure 1. Time series plot for ASPI over the time.

2. Unit root test and volatility clustering

Null Hypothesis: ASPI has a unit root Exogenous: Constant Lag Length: 7 (Automatic - based on SIC, maxlag=23)					
		t-Statistic	Prob.*		
Augmented Dickey-Fuller test statistic		-2.401618	0.1414		
Test critical values:	1% level 5% level 10% level	-3.434526 -2.863271 -2.567740			

Table 3. Results of unit root at	: 1 st	difference.
----------------------------------	-------------------	-------------

Null Hypothesis: D(ASPI) has a unit root Exogenous: Constant Lag Length: 6 (Automatic - based on SIC, maxlag=23)					
		t-Statistic	Prob.*		
Augmented Dickey-Fu	-13.15039	0.0000			
Test critical values:	1% level 5% level 10% level	-3.434526 -2.863271 -2.567740			

Table 2 represents that, at 5% significance level can be concluded that the ASPI series is nonstationary (P=0.1414) then checked unit root test for 1st difference. Table 3 indicate that the ASPI series is stationary at 1st difference (P=0.000). Then, obtained returns of the ASPI series and its stationary at level.

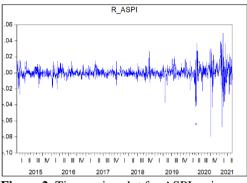


Figure 2. Time series plot for ASPI series.

From figure 2, it can be seen that there is evidence volatility clustering exists for our series. Then obtained AR (1) model using the least squared method and checked its residuals, which can be represented below.

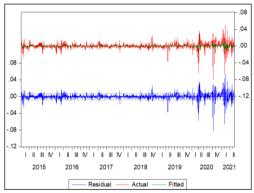


Figure 3. Residuals of the model.

Looking at the figures 2 to 3 volatility clustering periods when large changes are followed by further large changes and periods when small changes are followed by further small changes. When these things happen for residuals clearly can be said that volatility clustering exists. In order to be sure, can be run a heteroskedasticity test.

3. Testing ARCH effect. Table 4 indicates that, the null hypothesis is rejected and it can be concluded there is an ARCH effect exist (Obs*R-squared 69.6652 and P=0.00).

According to the above results, both conditions of volatile clustering and ARCH affect existing and satisfied. Therefore, all the justifications are satisfied to run ARCH family models.

Table 4. ARCH test.

C atatiatia	70.06776	Drob. E(1.1405)	0.000
F-statistic	12.96/76	Prob. F(1,1495)	0.0000
Obs*R-squared	69.66517	Prob. Chi-Square(1)	0.00

4. ARCH type model analysis. Four ARCH types of models were developed. They are the ARCH (5) model, GARCH (1, 1) model, EGARCH (1,1) model, and TGARCH (model). Estimated models are given in below tables 5 to 8.

Table	5.	ASPI	(5)	model.
-------	----	------	-----	--------

Dependent Variable: R_ASPI Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*RESID(-2)^2 + C(6)*RESID(-3)^2 + C(7)*RESID(-4)*2 + C(8)*RESID(-5)*2						
Variable	Coefficient	Std. Error	z-Statistic	Prob.		
C R_ASPI(-1)	-0.000252 0.237088	0.000123 0.028625	-2.056268 8.282432	0.0398 0.0000		
	Variance Equation					
C RESID(-1) ² RESID(-2) ² RESID(-3) ² RESID(-4) ² RESID(-5) ²	1.06 E- 05 0.194886 0.194010 0.070729 0.231699 0.168360	3.81E-07 0.031746 0.029069 0.024211 0.020115 0.014632	27.85955 6.138984 6.674029 2.921424 11.51896 11.50670	0.0000 0.0000 0.0000 0.0035 0.0000 0.0000		

Table 6. GARCH (1, 1) model.

Dependent Variable: R_ASPI Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) GARCH = C(3) + C(4)*RESID(-1)*2 + C(5)*GARCH(-1)						
Variable	Coefficient	Std. Error	z-Statistic	Prob.		
C R_ASPI(-1)	-0.000302 0.215727	0.000123 0.030792	-2.456862 7.006022	0.0140 0.0000		
	Variance Equation					
C RESID(-1) ^x 2 GARCH(-1)	1.41 E- 06 0.195984 0.790513	2.21E-07 0.012167 0.013844	6.386157 16.10722 57.10353	0.0000 0.0000 0.0000		

Table 7. EGARCH (1, 1) model.

Dependent Variable: R_ASPI Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(5)*RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1))						
Variable	Coefficient	Std. Error	z-Statistic	Prob.		
C R_ASPI(-1)	-0.000428 0.183155	0.000109 0.027204	-3.913899 6.732687	0.0001 0.0000		
	Variance Equation					
C(3) C(4) C(5) C(6)	-0.583721 0.331974 0.011895 0.966696	0.056208 0.017202 0.010345 0.004734	-10.38505 19.29818 1.149861 204.2182	0.0000 0.0000 0.2502 0.0000		

Table 8. TGARCH (1, 1) model.

Dependent Variable: R_AS Method: ML ARCH - Norma GARCH = C(3) + C(4)*RES + C(6)*GARCH(-1)	al distribution (B))	
Variable	Coefficient	Std. Error	z-Statistic	Prob.	
C R_ASPI(-1)	-0.000282 0.214034	0.000131 0.030705	-2.156210 6.970573	0.0311 0.0000	
Variance Equation					
C RESID(-1)^2 RESID(-1)^2*(RESID(-	1.42 E- 06 0.204686	2.21E-07 0.013874	6.414842 14.75299	0.0000 0.0000	
`1)<0) GARCH(-1)	-0.021142 0.790907	0.021588 0.013940	-0.979350 56.73764	0.3274 0.0000	

5. Model selection. Compared, four models in order to find the best model using AIC, SIC, H-Q, and Log-likelihood values. The results are given in table 9.

According to the above test results AIC, SC, and H-Q are the) is a high value for GARCH (1, 1) model compared with others. Therefore, the estimated GARCH (1, 1) model is the best model for determining the volatility of ASPI.

6. Diagnostic checking for GARCH (1, 1) **model.** The heteroskedasticity and serial correlation of residuals were tested (Table 10).

Table 10 indicates that Obs*R-squared is not significant (P-value - 0.9999) at 5% significance level. Therefore, the hypothesis of no ARCH effect cannot be rejected. Hence, there is no ARCH effect in the residuals.

Table 3. Widder selec	tion results.			
Model selection criteria	ARCH (5) model	GARCH (1, 1) model	EGARCH (1, 1) model	TGARCH (1, 1) model
AIC	-7.521902	-7.552830	-7.542373	-7.551803
SIC	-7.493534	-7.535100	-7.521097	-7.530527
H-Q	-7.511333	-7.546224	-7.534446	-7.543876
Log likelihood	5641.904	5662.069	5655.237	5662.300

Table 9. Model selection results.

Table 10. Results of heteroskedasticity test.

Heteroskedasticity Test: ARCH							
F-statistic		Prob. F(1,1495)	0.9999				
Obs*R-squared		Prob. Chi-Square(1)	0.9999				

Table 11. Correlogram for sample ACF and PACF of squared residuals.

Date: 06/10/21 Tir Sample: 1/02/2015 Included observatio	5/21/2021					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
ili ili	1 0	1	0.000	0.000	1.E-08	1.000
u de la companya de l		2	-0.015		0.3396	0.844
di d	4	3	-0.012	-0.012	0.5631	0.905
- i)		4	0.039	0.039	2.8811	0.578
ų.		5	-0.006	-0.007	2.9425	0.709
di di		6	-0.010	-0.009	3.0793	0.799
di d		7	-0.016	-0.015	3.4464	0.841
di la constante	4			-0.003		0.903
- di		9	0.003	0.002	3,4591	0.943
-	1	10	0.007	0.008		0.966
		11	0.002			0.98
	1	12	0.016			0.98
di la constante		13		-0.010		0.990
- ii	- ii	14	0.017	0.016	4,5017	0.992
- fi	- II	15	0.003		4.5135	0.996
ili	ili	16	0.005			0.998
ii.	ili ili		-0.000			0.999
di la constante				-0.004		0.999
ii.	1			-0.012		1.000
1	1 1			-0.016		1.000
1	1 1			-0.020		1.000
3				-0.010		1.000
1				-0.020		1.000
3	3			-0.011		1.000
1	1 3			-0.005		1.000
31	3	26	0.003	0.001		1.00
		27	0.006		6.8166	1.000
1	1 32		-0.014		7.1116	1.000
1	1 2		-0.024		7.9630	1.000
1	1 3	30		-0.000	7.9638	1.000
il.	1 3	31		0.004	8.0096	1.000
	1 3	32	0.0032		9.5813	1.000
	1 3	32	0.032	0.033	9.5813	1.000
2	1 2			-0.004		1.000
1	1 31		-0.006		10.309	1.000
	1 31		-0.014		10.626	1.000
40	1 40	130	-0.005	-0.008	10.669	1.000

The table 11 indicates that, all P-values of autocorrelations are not statistically significant

at 5% significance level. Therefore, we can't reject null hypothesis and statistically can be concluded that residuals are not serially correlated.

Based on the above analysis of residuals confirmed that GARCH (1, 1) model is the best and appropriate model.

Conclusion

This study mainly focused on modeling the volatility of ASPI using ARCH family models. In the analysis, it was found that ASPI data is stationary at 1st difference. Four ARCH family models were estimated for the data. Among these four models, based on the model selection and diagnostic criteria it was conformed that GARCH (1, 1) model is the best model for ASPI in Colombo stock exchange.

References

[1] Peiris, T. U. I., and Peiris, T. S. G. Measuring stock market volatility in an emerging economy. ICBI2011/A&F, 2011. 152.

[2] Samayawardena, D. N., Dharmarathne, H. A. S. G., and Tilakaratne, C. D., Volatility models for world stock indices and behaviour of all share price index, 2015.