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Introduction 

Heat conduction problems have achieved 

substantial popularity in science and industrial 

fields and play a very important role, such as 

resources exploration, aerospace engineering, 

atmosphere measure, ocean engineering, 

quantum mechanics, etc. Industry-related heat 

conduction research has a great significance and 

is mostly regarded to the inverse problem of 

heat conduction equation such as by 

determining boundary, initial or the internal data 

of the medium of heat transfer, a known 

temperature at the internal or the boundary point 

of the domain can be controlled. Usually solving 

the inverse problem of the heat conduction 

equation is ill-conditioned and the small 

perturbation of data will lead to a problem of 

huge error. 

There are several methods available in the 

literature to solve inverse heat conduction 

problems. Numerical methods such as the finite 

element method [1], finite volume method [2], 

and difference schemes[3]  have been used by 

many researchers. Approximations using the 

moving least square method, variational 

iteration method, cubic-B spline method, and 

polynomial regression model are some other 

methods used to solve inverse problems. But 

there is less research on solving inverse 

parabolic problems using the Fourier method 

where [4] presents the Fourier series analysis of 

the inverse problem of finding the coefficient of 

the lowest term within the heat equation with a 

non-local Wentzell–Neumann boundary and 

integral over determination conditions. The 

novelty of our work is, we use the Fourier 

method to construct the control parameters, 

initial condition, and the source term. 

 

 

 

 

In this study, we consider the following 

uncontrolled heat equation with homogeneous 

Neumann boundary conditions in a finite-

dimensional interval: 

ut(x,t)-∝uxx(x,t)=0  0≤x≤L,t≥0,-(1) 

ux(0,t)=ux(L,t)=0  t≥0, 

u(x,0)=f(x)  0≤x≤L, 

and find the control parameters, initial 

temperature g(x) and the heat source Φ(x,t) such 

that the point evaluation u(x0,t) tracks the 

desired signal F(t)∈C(0,T), where the controlled 

system is given by, 

ut(x,t)-∝uxx(x,t)=Φ(x,t) 0≤x≤L,t≥0, 

ux(0,t)=ux(L,t)=0  t≥0, 

u(x,0)=g(x)  0≤x≤L, 

u(x0,t)=F(t). 

 

Here F(t) is a known function. 

Objectives of this study are, 

• to construct the control parameters, the 

initial condition, and source term so 

that the point evaluation at an internal 

point in the domain will track a known 

function. 

• to validate our findings using 

COMSOL simulations. 

 

Methodology 

To find the control parameters of the heat 

equation with Neumann boundary conditions 

the uncontrolled heat equation with 

homogeneous Neumann boundary conditions 

was solved using the method of separation of 

variables, 

u(x,t)= ∑ an cos (
nπx

L
) e

-(
n2π2αt

L2
)

∞

n=1

 



10th Annual Science Research Session 2021, FAS, SEUSL 

89 

 

By considering the controlled initial boundary 

value problem (1), let the Fourier expansions of 

internal temperature, initial temperature and 

heat source be 

u(x,t)= ∑ an(t) cos (
nπx

L
) ,-(2)

∞

n=1

 

g(x)= ∑ bn cos (
nπx

L
) ,

∞

n=1

-(3) 

Φ(x,t)= ∑ cn(t) cos (
nπx

L
) .-(4)

∞

n=1

 

 

Differentiating (2) with respect to t and twice  

with respect to x, substituting the results in (1) 

along with (4) and by using the orthogonality 

of cos (
nπx

L
), a first-order ODE can be obtained 

as follows: 

an
' (t)+α (

nπ

L
)

2

an(t)-cn(t)=0-(5). 

At the fixed point x=x0, u(x,t)=u(x0,t). Then (2) 

takes the form, 

u(x0,t)= ∑ an(t) cos (
nπxo

L
)

∞

n=1

 

Hence the Fourier coefficient takes the form, 

an(t)=
2

L
∫ u(x0,t) cos (

nπx0

L
) dx.-(6)

L

0

 

Substituting u(x0,t)=F(t) in (6) and by 

integrating we obtain the Fourier coefficient of 

internal temperature, 

an(t)=2F(t) cos (
nπx0

L
) .-(7)

 

Substituting an(t) and an
' (t) in (5), the Fourier coefficient of heat source be, 

cn(t)=2F'(t) cos (
nπx0

L
) +α (

nπ

L
)

2

2F(t) cos (
nπx0

L
) .-(8) 

From (1) and (8), heat source can be obtained as follows, 

Φ(x,t)= ∑ [2F'(t) cos (
nπx0

L
) +α (

nπ

L
)

2

2F(t) cos (
nπx0

L
)] cos (

nπx

L
) .

∞

n=1

 

Comparing coefficients of (2) and (3) at t=0, and by (7), we obtain the Fourier coefficient of initial 

temperature, 

bn=an(0)=2F(0) cos (
nπx0

L
) .-(9) 

Hence from (2) and (9), the initial temperature can be obtained as follows, 

g(x)=2F(0) ∑ cos (
nπx0

L
) cos (

nπx

L
)

∞

n=1

. 

Numerical simulation; 

From the above results, the controlled system (1) can be modified to, 

ut(x,t)-∝uxx(x,t)= ∑ [2F'(t) cos (
nπx0

L
) +α (

nπ

L
)

2

2F(t) cos (
nπx0

L
)] cos (

nπx

L
) ,-(10)

∞

n=1

 

ux(0,t)=ux(L,t)=0, 

u(x,0)=2F(0) ∑ cos (
nπx0

L
) cos (

nπx

L
)  

∞

n=1

0≤x≤L,t≥0. 

Choose a domain [0,l] in COMSOL geometry. Solve (10) and plot u(x0,t), and F(t) on the same 

figure. 

i) Track F(t)= sin(t) + cos(t) at x0=0.75 to validate the trigonometric functions satisfy the 

results 

ii) Track F(t)=2t at x0=0.75 to validate the linear functions satisfy the results 
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Results and Discussion 

Fourier coefficients of the approximations of the initial condition and source term were determined 

by derived ODEs as given below:  

Initial temperature 

g(x)=2F(0) ∑ cos (
nπx0

L
) cos (

nπx

L
) ,

∞

n=1

 

Heat source  

Φ(x,t)= ∑ [2F'(t) cos (
nπx0

L
) +2α (

nπ

L
)

2

cos (
nπx0

L
) F(t)] cos (

nπx

L
)

∞

n=1

. 

To validate the results, we simulate in COMSOL. In there, we solve the controlled heat equation 

with the above results and track the temperature values at an interior point in the geometry for a 

given known signal. 

  

Tracking F(t)= sin(t) +cos(t) at x0=0.75; 

We solve the following heat problem, 

ut(x,t)-uxx(x,t)=[2(cos(t) - sin(t)) cos(0.75π) +2π2(sin(t) + cos(t)) cos(0.75π)] cos(πx) , 

ux(0,t)=ux(1,t)=0, 

g(x)=2 cos(0.75π) cos(πx) , 

in COMSOL for  0≤x≤1, 0≤t≤1, when n=1, α=1 and L=1. 

 
Figure 1. The comparison between the measured temperature and desired temperature at x 0=0.75 for 

F(t)= sin(t) +cos(t). 
 

The above figure shows that the measured temperature and the desired temperature F(t) overlap 

which validates the results for any polynomial as polynomials can be represented using sine and 

cosine series. 

Tracking F(t)=2t at x0=0.75; 

We solve the following heat problem, 

ut(x,t)-uxx(x,t)=[4 cos(0.75π] +4π2tcos(0.75π)] cos(πx) , 

ux(0,t)=ux(1,t)=0, 

g(x)=0, 

in COMSOL for 0≤x≤1, 0≤t≤1, when n=1, α=1 and L=1. 
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Figure 2. The comparison between the measured temperature and desired temperature at x 0=0.75 for 

F(t)=2t. 

 

The above figure shows that the measured 

temperature and the desired temperature F(t) 

overlap which validates the results for any linear 

function. The trigonometric, linear, and 

nonlinear functions also give an overlapped 

plot, as shown above, proving that the results are 

valid for any known linear, trigonometric, and 

polynomial signals. The control parameters 

obtained can be used to track any known point 

which validates the results for any given point 

in the domain considered. Here we did our study 

only for n=1 and we will further study the case 

n>1 in the future. Even though we used 

homogeneous Neumann boundary conditions, 

the results are applicable for non-homogeneous 

Neumann boundary conditions, as we can 

transform the problem to a homogeneous 

Neumann boundary value problem.  

Conclusion 

In this work, the one-dimensional inverse 

parabolic problem with Neumann boundary 

conditions has been solved using the Fourier 

method. The control parameters, the heat 

source, and the initial condition have been 

obtained such that the point evaluation u(x0,t) 

tracks the desired signal F(t)∈C(0,T) in the 

controlled system. The simulation results show 

that the control parameters we found can be used 

to track any given point in the domain 

considered for n=1. Finally, it can be concluded 

that the Fourier method is an effective method 

to solve inverse parabolic problems. 

 

References  

[1] Liu, T., A numerical method for parabolic 

inverse problems, Proc.-2009 Int. Conf. 

Comput. Intell. Softw. Eng. CiSE 2009, 2009. 

pp. 0-3. 

[2] Wang, B., Zou, G. A., Zhao, P., Wang, Q., 

Finite volume method for solving a one-

dimensional parabolic inverse problem, Appl. 

Math. Comput., 2011. 217(12): pp. 5227-5235. 

[3] Ashyralyyev, C., Akyuz, G., Dedeturk, M.: 

Approximate solution for an inverse problem, 

2017, 197: pp. 1-16. 

[4] Ismailov, M. I., Tekin, I., Erkovan, S., An 

inverse problem for finding the lowest term of a 

heat equation with Wentzell-Neumann 

boundary condition, 2019, 27(11): pp. 1608-

1634. 


