
JarBot: Automated Java Libraries Suggestion in

JAR Archives Format for a given Software

Architecture

P. Pirapuraj

Department of Information & Communication Technology, Faculty

of Technology, South Eastern University of Sri Lanka,

Oluvil, #32360, Sri Lanka

pirapuraj@seu.ac.lk

Indika Perera

Department of Computer Science and Engineering, Faculty of

Engineering University of Moratuwa,

Sri Lanka

 indika@cse.mrt.ac.lk

Abstract— Software reuse gives the meaning for rapid

software development and the quality of the software. Most of

the Java components/libraries open-source are available only

in Java Archive (JAR) file format. When a software design

enters the development process, the developer needs to

manually select necessary JAR files via analyzing the given

software architecture and related JAR files. This paper

proposes an automated approach, JarBot, to suggest all the

necessary JAR files for given software architecture in the

development process. All related JAR files will be downloaded

from the internet based on the extracted information from the

given software architecture (class diagram). Class names,

method names, and attribute names will be extracted from the

downloaded JAR files and matched with the information

extracted from the given software architecture to identify the

most relevant JAR files. For the result and evaluation of the

proposed system, 05 software design was developed for 05 well-

completed software project from GitHub. The proposed system

suggested more than 95% of the JAR files among expected

JAR files for the given 05 software design. The result indicated

that the proposed system is suggesting almost all the necessary

JAR files.

Keywords— Java Archive (JAR); software architecture; class

diagram; code reuse; bytecode analyzing: WordNet; N-gram

technique.

I. INTRODUCTION

Developers use external libraries to speed up the
development and decrease Software Project Manufacturing
Costs. It is not an easy process to rightly use libraries from
third parties [1]. When developing software applications,
software developers depend on frameworks and public
application program interfaces. When programming with an
API, customers either have to use existing documents or
codes to direct them using the target API [2].

The programmer should have various levels of
knowledge to effectively use certain libraries and sample
code, from the name of a class providing certain
functionality to various methods calling upon multiple
objects performing a particular task [3]. If the developer is
not an expert in the domain of a particular project and he/she
is fresh to the software development process, including
libraries into the project will be a very big challenge.
According to the current state of software companies, when
the software design enters into the development process, few
software libraries need to be included in starting the
development process. If the company has an expert in the

field/ context of the software, he/she will suggest few
appropriate libraries. Otherwise, the developer needs to
download the relevant libraries set and check the suitability
of the libraries with the project to select relevant libraries. It
will be a time-consuming task.

Indeed, in many languages, Java has a unique benefit:
Without recompilation, the Java program operates on
virtually any known software and hardware architecture.
Java encourages reuse by componentization and container
classes JAR (pre-compiled versions of the components) [4].

When configuring the Java development environment
(installing JDK and JRE), some Java prewritten libraries will
be included by default in JAR format inside the JDK folder.
All Integrated development environments, such as Eclipse
and NetBeans, include all the libraries from JDK when
developing Java projects. All those JAR files included inside
the JDK can be used publically in all the projects.

Most of the third-party libraries which are in JAR archive
file format are not available inside JDK. But, those libraries
are available on some websites as free. Selecting suitable
libraries from those websites is challenging unless the project
developer is an expert in the project context.

 On the other hand, if all the necessary JAR files for a
project are known before the implementation process, one of
the software project management and comprehension tool
like “Apache Maven” can be used via mentioning all the
necessary JAR files inside the “Dependency” tag of
POM.XML file in the project. All the dependency fill will be
automatically added when executing the project using the
project management and comprehension tool. If the
developer does not know about the necessary JAR files
before the implementation process, using the tool mentioned
above is meaningless.

This paper proposes a framework to suggest JAR files
automatically based on the information extracted from the
given software architecture (Class diagram). The overall idea
is to extract information from given software architecture
(Class diagram), search and download all the related JAR
files from the internet based on the extracted information,
and analyze the suitability of all the downloaded JAR files
with the given software architecture, select the most relevant
JAR files among them via rating them in the analyzing
process, and finally, suggest the selected JAR files as
suitable libraries for the given software architecture.

2021 2nd Global Conference for Advancement in Technology (GCAT)
Bangalore, India. Oct 1-3, 2021

978-0-7381-3215-0/21/$31.00 ©2021 IEEE 1

The remainder of the paper is organized as follows.
Section II presents the Literature review of this study,
Section III describes about the proposed system, giving an
overall picture, describing how information is collected from
software architecture and how it can be used to download
JAR files, how to analyze those downloaded JARs and how
to select most relevant JAR files. Section IV reports the
result and evaluation. After a discussion in Section V,
Section VI concludes.

II. RELATED WORK

There is no fully related research to this study, but there
are few relevant works. This work included some techniques
used in our earlier work [5]. Erik Linstead and et al. said that
automated analysis is essential to drastically growing
software repositories to understand software structure,
function, complexity, and evolution [6].

Selene is a Code Recommendation System to suggest
code while typing anything in IDE (ECLIPSE) from code
repositories based on typed text in IDE. The most relevant
code is selected by giving a local similarity [3]. Anh Tuan
Nguyen and et-al. said that the present projects use
Application Programming Interfaces (APIs) widely: even the
"HelloWorld" program invokes an API strategy. Their
research has proposed a tool APIREC, based on the
programming code changes, and the proposed tool suggests
the most relevant API calls. They have used the n-gram
technique and some other machine learning techniques [7].

Another study performed by Santiago Vargas-Baldrich
and others [8] on bytecode analysis and dependencies of
open-source tags or categories defining features like
application domains, programming languages, operating
systems, etc. in the fields of browsing improving, looking
for, and finding processes in large repositories. They
developed a novel approach called SALLY to automatic
tagging of closed-source (only bytecode is available)
projects.

A. T. Nguyen and T. N. Nguyen have suggested two
novel approaches and tools, such as GraLan and ASTLan,
for API recommendation. GraLan, a graph-based statistical
language model, suggests API based on the calculation of
appearance probabilities of source code corpus. They build
an API suggestion engine using GraLan and ASTLan
supports the suggestion of common syntactic templates. In
this research, the said that n-gram statistical language model
faces challenges in catching the patterns at more elevated
levels of abstraction because of the crisscross between the
sequence nature in n-grams and the structure idea of syntax
and semantics in source code [9]. Through their suggested
API suggestion engine, they overcome the challenges
mentioned above. Their approach deals with the program
inside the IDE, but we search libraries from the internet, in
that context, we need the n-gram technique.

In another research, the same problem was handled by
Xiaoyu Liu and et al. [10], but they start from the result for
the API recommendation. At the same time, API calls of top-
10 API candidates were identified by GraLan [9], but they
did not rely on code change history. They eliminate the
weakness of GraLan by employing a discriminative re-
ranker. In this way, they suggested a tool called RecRank.
This novel discriminative positioning methodology utilizes a
novel sort of highlights dependent on using ways to naturally

suggest top-1 APIs dependent on the top-10 API applicants
recommended by GraLan.

Another study conducted by Hussein Alrubaye and et-al.
About third-party library migration. There was an urgent
need to support developers in migrating their third-party
libraries, and they have developed a tool called
MigrationMiner. The tool using Abstract Syntax Tree (AST)
code representation to migrate between two third-party
libraries. They give GitHub open source projects as input,
and the MigrationMiner extracts the following information
from software projects as commit ID, commit date,
developer name, and commit description. Using the
information mentioned above, the MigrationMiner detects
migrations between third-party Java libraries [11].

NonDex is a tool for detecting and debugging wrong
assumptions on Java APIs. This means, sometimes client
code can fail by applying an underdetermined API. NonDex
helps to detect and debug such fails proactively. The tool was
designed to detect the wrong assumptions by analyzing the
behavior in the execution time [12].

Massimiliano Di Penta and et al. [4] proposed an
automatize approach to identify the license of JAR achieves
combining code-search engine use with the automated
classification of licenses found in the JAR's text files. For
this task, they used information decompiled from the
bytecode of its classes to query a code search engine, such as
class name and package name.

For most of the bytecode analyzing project, the ASM
Bytecode Manipulation Framework is used to obtain class
names, class fields, method names, and method arguments
from bytecode [13] And Apache Lucene [14] is used to split
the extracted identifiers from bytecode by camel case and
stemmed.

III. PROPOSED SYSTEM AND METHODOLOGY

The proposed system JarBot is the modified version of
our earlier work[5] which suggests relevant source code files
and source code snippets from source code forges (GitHub,
SourceForge, etc.) when a software architecture enters into
the development process. But, most of the Java libraries are
in JAR archive file format, our earlier developed framework
will not suggest the necessary JAR files. Therefore, the
proposed system in this paper includes a few more fresh
pieces of software components to handle JAR achieve files.

A. Proposed System

The JarBot includes several pieces of software
components. The system starts with software architecture
(Class diagram) in XML format to extract a few information
(class name, methods name, and attributes name) to do the
JAR files suggesting process. The following are the proposed
system's major processes, I. Extracting important information
from the given XML file (Class diagram), II. Crawl some
JAR files from the internet based on the information
extracted from the given software architecture, III. Extracting
information from the downloaded JAR files, IV. Identifying
the most relevant JAR files via comparing both information
extracted from the given software architecture and
downloaded JAR files.

from the given XML file (Class diagram), II. Crawl some
JAR files from the internet based on the information
extracted from the given software architecture, III. Extracting

2

information from the downloaded JAR files, IV. Identifying
the most relevant JAR files via comparing both information
extracted from the given software architecture and
downloaded JAR files.

Fig 1. Data flow diagram of the proposed system

Figure 1 describes the data flow diagram of our proposed
system. It starts with software architecture (class diagram) in
XML format, extracts information from the architecture,
crawl few JAR files based on the information extracted from
the architecture, extract data from downloaded JAR files,
compare the both information extracted from given software
architecture and downloaded JAR files to identify the most
relevant JAR files, and finally, suggest the set of suitable
JAR files to the given software architecture.

B. Methodology

The JarBot starts with an XML file (class diagram), and
information from the file is the input and starting point of our
proposed system. The following module is the essential part
of the proposed system.

XMLExtractor – For this module, we used the module
created in our earlier work, the detailed information about
the XMLextractor available in our earlier work [5]. The
javax.xml package was used to implement this module,
which has two main classes: DocBuilder: Define the API
for obtaining DOM instances from the XML document
DOCBUILDERFactory: define the API for the creation of
the DOM objects tree from the XML documents. The
purpose of this module is to extract information from the
software architecture.

Java2s and jar-download Crawlers – Two specialized
crawlers were created for downloading relevant JAR files.
There are so many websites for downloading JAR files, but
java2s and jar-download are two websites that make the
downloading process easy. The JSOUP library is used to
develop the crawlers mentioned above. Normally, the
crawler starts with a keyword and a seed URL, the
information extracted from the given software architecture
are the keywords, and the URLs of the websites mentioned
above are the seed URLs.

JARExtractor – This module aims to unpack the
downloaded JAR files and extract information from them.
All the JAR files have “META-INF” folder in them. Some
JAR files are having “.txt” files while some are having
“.MF” files inside the “META-INF” folder. The
JARExtractor module collects some information from those
“.txt” and “.MF” files.

ASMExtractor – Along with the information collected
using JAR Extractor, a few more information (class names,
class fields, method names, and method arguments) need to
be collected from all the class files (.class bytecode files) are
included inside all the JAR files. ASM Bytecode
Manipulation Framework is used to implement this module
to accomplish the task mentioned above.

ApacheLuceneSplitter – Most of the identifiers (class
names, class fields, method names, and method arguments)
obtained from all the downloaded JAR files using
ASMExtracter were connected words (e.g. ListView(),
lstCon, and writeTag()). This module implemented using
Apache Lucene to split the identifier, which are connected
words.

WordIdentifier – The results of the ApacheLuceneSplitter
module were few real dictionary words and some
meaningless abbreviated identifiers. The WordIdentifier
module aims to identify the real meaningful words from the
meaningless abbreviated identifiers obtained by the
ApacheLuceneSplitter. If this module cannot identify the
abbreviated term, the N-gramChunker module is used, and
again this module will be used to determine the word.
Stanford Spellchecker was used to implement this module.

N-gramChunker – As discussed earlier, the
WordIdentifier identifies the real meaningful word from the
abbreviated term. Sometimes, the WordIdentifier cannot
identify the meaningful words from the abbreviated term.
This module aims to make chunks from the abbreviated
identifiers when the WordIdentifier cannot identify the real
words. N-gram is an NLP technique, depends on the value of
N and divides a word into chunks. For example the word
is "rect" and N=2, the chunks are "re", "ec", "ct".

WordNet – WordNet is a lexical database of an English
word and sense relations. A sense is a particular meaning of
a word. WordNet provides the synset for each sense of a
particular word, a list of synonyms for the sense. This
module aims to identify the synonym of all the words
identified from the above process. The JAWS Java library is
used to develop this module. This module is used in two
places in the proposed system: searching JAR files from the
internet and finding a synonym of the words identified from
the downloaded JAR files in the comparison process.

Analyzer – A large number of words will be produced
from the modules mentioned above. The final task is to
analyze the word pool extracted from the download JAR
files and words extracted from the given software
architecture to identify the most relevant JAR files from the
downloaded JAR files. We used an equation derived in our
earlier work [5] (M = Mi + 100 / N where M is denoted
marks are to be given for JAR file, Mi is denoted initial
marks for each iteration, and N is denoted the number of
identifier extracted from the XML file(class diagram)) for
assign marks for matching words from the both way (words
from the software architecture and words from the
downloaded JAR files).

IV. RESULT AND PERFORMANCE EVALUATION

In this section, the set of experiments conducted on the
proposed system to validate it, evaluate its performance, and
the datasets used to evaluate it are described in detail.

3

A. Input

As described in section II, the proposed system starts
with software architecture in XML formats. Five well-
completed software system from the GitHub have been
selected, and the software design (class diagram) were drawn
for the selected five software system and export it as an
XML file. The details of the necessary JAR files were
collected from the POM.xml files of the targeted projects
from GitHub (because all the targeted projects are maven
projects, and all the necessary JAR files are indicated inside
the dependency part of the POM.xml file).

Table I includes the following: all the targeted projects
from GitHub, the sample of the included JAR files, and the
sample of the included class files of each project. Table II
shows all the included JAR files, class files, and methods
inside the targeted 05 projects. The “fastjson” was a bigger
project among the 05 projects, including 189 classes, 721
methods, and 62 JAR files used to implement the project.
The second-largest project was “Minim” which included 125
classes, 413 methods, and 11 JAR files were used to
implement the project.

TABLE I. : SELECTED PROJECTS AND THE SAMPLE OF INCLUDED JAR

FILES AND CLASSES

Projects Name
 Sample

of included classes
Sample

of included JARs

fastjson JSONPatch,
AnnotationSerializer,
ClassWriter

plexus-compiler-
javac, javax.servlet-
api, retrofit

AdyenPayments Credentials, Payment,
RetrieveRecurringCard
Details, Credentials

adyen-axis-ws-
client, commons-
codec, wsdl4j

JFeatureLib ThreadWrapper,
LaplaceFilter,
FuzzyOpponentHistogr
am

Imageanalysis, lire,
args4j, commons-io

Minim AudioListener,
AudioRecordingStrea
m, AudioOut

Jl, tritonus-share,
mp3spi

soundcloud Playlist, SoundCloud,
Track

com.soundcloud.api,
gson, httpclient

The class names and the method names of the targeted 05
projects were used to draw the class diagram for the targeted
05 projects, after drawing the class diagrams of all the
projects, converted into an XML file. The XML files were
the input for the proposed system. The expected output was
the 101 number of JAR files.

The drawn class diagrams were given to the proposed
system as input in XML file format. The XMLextractor
module of the proposed system was used to extract
information (class names and method names) from the given
XML files. Most of the extracted information (identifiers)
were connected words. The ApacheLuceneSplitter module
was used to split the identifier, which is connected words.
The extracted and split word pool were the keywords for the
crawler modules.

B. Result of Crawlers

As we described in section II, the JarBot has two types of
crawler, which are Java2s and jar-download for the two
selected websites. The inputs for the crawlers are the
information extracted from the given software architectures

(class diagrams), and the seed URLs were the URL of the
two websites mentioned above. Both the crawlers fetched
423 JAR files all together for the given information from
both targeted web site. There were 97 expected JAR files in
the downloaded JAR files pool out of the expected 101 JAR
files.

TABLE II. : DETAILS OF THE JAR FILES, CLASSES, AND METHODS

ARE INCLUDED IN ALL THE TARGETED PROJECTS FROM

GITHUB

Projects Name Number of
JAR files

Number of
Classes

Number of
Methods

fastjson 63 189 721

Adyen 08 08 13

JFeatureLib 13 77 264

Minim 11 125 413

soundcloud 06 06 192

C. Result of other modules of the proposed system

After the crawling process, the rest of the proposed
system modules start from the output of the two types of
crawlers, a pool of JAR files. The JARExtractor has taken all
the 423 JAR files one by one, unpacked them, and extracted
a few information via analyzing the “.txt” and “.MF” files of
“META-INF” folder of those JAR files. The extracted
information was the actual name of the JAR file, packages
name and the implementation vendor details. The extracted
information was a collection of words. Through this process,
2087 words were collected from those downloaded 423 JAR
files. Those words were directly sent to the analyzing phase.

JAR files consist of binary files. The ASMExtractor was
used to extract information (class names, class fields, method
names, and method arguments) from binary (.class files)
files. The module collected 9723 words. There were 2103
real meaningful words and 7620 connected words. The real
meaningful words were directly sent to the analyzing process
and the connected words were transferred to the
ApacheLuceneSplitter, N-gramChunker, and WordIdentifier
modules. Through those processes, 17227 words have been
produced. All those words were used in the analyzer for
ranking. Table III shows the details about those words'
information.

The analyzer used WordNet to get synonym of all the
words. In the ranking process, the words extracted from the
given software architecture have been taken one by one and
compared with the words extracted from the downloaded
JAR files. If the words are matched with each other, marks
will be assigned for that. If the words are not matched, the
synonym of the words taken by using WordNet, and then do
the same process.

The JAR files that achieved maximum marks have been
selected through the processes mentioned above, which were
97 JAR files among 423 Downloaded JAR files. But the
number of JAR files expected was 101, and the suggested
number of JAR files was 97. The proposed framework failed
to suggest 04 number of JAR files.

4

TABLE III. : DETAILS ABOUT DOWNLOADED JAR FILES

of
Downloaded

JARs

Words
from

META-
INF folder

of words
from .class

files

of Real
meaningful

words

of
connected
words, &

Real words
produced
from them

423 2087 9723 2103 7620,

17227

V. DISCUSSION

Research implications. The findings of our research aim
show that suggesting related JAR files when a software
architecture enters into the development process is time-
consuming and most difficult unless the developer is
experienced and familiar with the context of the software
project. The challenge mentioned above is very common for
novice developers working in a complex and large software
project. The proposed system is a very good solution for
them, when using the proposed JarBot, the time required to
find the necessary JAR files is reduced by automatically
suggesting the necessary JAR files within a short period.

We hope our study will draw new directions for assessing
the value of the search-based JAR file suggestions. In
addition, the Apache Lucene and ASM , as used in JarBot, is
more effective and efficient than using our earlier criteria (In
our earlier work [5], our own developed camel case and
explicit splitter were used to handle the connected words). A
considerable performance increase is noticed in JarBot via
using Apache Lucene and ASM in some modules.

Moreover, the JarBot helping the developer to complete
the software project within the targeted time via
automatically attach the necessary JAR files. And the other
advantage is that software projects are being developed with
quality assurance because JarBot will suggest the well
completed and well-relevant JAR files from the selected
websites. Therefore, JarBot can be highly recommended for
novice developers who can work as trained
and experienced software professionals, saving considerable
time and money for the project which is large or small and
complex or simple projects in which they work. The
developers can benefit in another way using JarBot, i.e., by
anticipating the required JAR files in advance (before the
software architecture inserts into the JarBot) and comparing
the incoming answer from the JarBot, and improving
themselves.

Practical implications. In the software development
process, JarBot can identify JAR files when giving a
software architecture (class diagram) in XML format.
Developers can make their programs more robust with this
framework.

Developers can use this proposed framework to correctly
suggest and handle the necessary JAR files within a short
period than a developer takes by doing the same process
manually. The evaluation phase of this study proved that the
JarBot could suggest more than 95% of the necessary JAR
files. Also, the testing phase of this study proved that all the
modules of JarBot, such that XMLExtractor, crawlers,
JARExtractor, ASMExtractor, ApacheLuceneSplitter,
WordIinder, N-gramChunker, and Analyzer are working
perfectly. Without the high accuracy of the modules

mentioned above, it was impossible to suggest more than
95% of the expected JAR files by the JarBot.

The usage of the WordNet and the N-gram greatly
reduces the chances of necessary JAR files going wrong and
missing because the N-gram technique help to identify the
real words from all the abbreviated identifiers. And the usage
of WordNet provides a synset (a list of synonyms) for each
word in the analyzing process. In this way, the probability of
missing or going wrong of necessary JAR files was very less.

Limitation of this research. The main limitation of this
work is that the proposed system is only suitable for Java
programming language because it is fully based on JAR file
(Java Achieve) suggestion. Another limitation of the JarBot
is which starts the process with the software architecture, in
this work, the class diagram is only used as software
architecture, and other diagrams also can be used. But all the
software architecture needs to be given in XML format. The
next limitation of the work is that though there are several
websites for JAR file download, the JarBot included only
two websites, such as java2s and jar-download. The next
limitation is what we say, even if some words have more
than ten synonyms, by default, the WordNet will answer
only ten synonyms. All the limitations mentioned above can
be broken via future modification of the JarBot.

VI. CONCLUSION

 Novice developers face difficulties when finding
necessary JAR files for a Java software project when a
software architecture enters into the development process. In
this paper, we presented a framework, JarBot, to
automatically suggest the necessary JAR files for given
software architecture in XML format in the development
process. The JarBot includes modular architecture with many
components such as XMLExtractor, crawlers, JARExtractor,
ASMSplitter, ApacheLuceneSplitter, WordIdentifier, N-
gramChunker, and Analyzer. Each module mentioned above
is interdependent, and the output of one module is input to
another module. We validated the JarBot against 05 well-
completed Java software projects, targeting used JAR files in
those selected projects. The software architectures (class
diagrams) for the selected 05 Java projects were designed
and exported as XML files. And then, the software designs
were given as input to the JarBot. The JarBot has suggested
more than 95% of the expected JAR files. Our results show
that JarBot efficiently suggests the necessary JAR files for
software architecture in the development process.

In the future, we aim to extend JarBot along the
following dimensions: (i) introduce support for all the
diagrams as software architecture, (ii) to cover other all
websites which are providing JAR files download, (iii)
enable JarBot to use all the list of synonym of a particular
word using in analyzing process.

REFERENCES

[1] M. Kechagia, X. Devroey, A. Panichella, G. Gousios, and A. Van

Deursen, “Effective and efficient API misuse detection via exception

propagation and search-based testing,” ISSTA 2019 - Proc. 28th

ACM SIGSOFT Int. Symp. Softw. Test. Anal., pp. 192–203, 2019,

doi: 10.1145/3293882.3330552.

[2] M. Lamothe and W. Shang, “Exploring the use of automated API

migrating techniques in practice,” Proc. 15th Int. Conf. Min. Softw.

Repos. - MSR ’18, pp. 503–514, 2018.

[3] N. Murakami and H. Masuhara, “Optimizing a search-based code

recommendation system,” 2012 3rd Int. Work. Recomm. Syst.

Softw. Eng. RSSE 2012 - Proc., pp. 68–72, 2012, doi:

5

10.1109/RSSE.2012.6233414.

[4] M. Di Penta, D. M. German, and G. Antoniol, “Identifying licensing

of jar archives using a code-search approach,” Proc. - Int. Conf.

Softw. Eng., pp. 151–160, 2010, doi: 10.1109/MSR.2010.5463282.

[5] P. Pirapuraj and I. Perera, “Analyzing source code identifiers for

code reuse using NLP techniques and WordNet,” 3rd Int. Moratuwa

Eng. Res. Conf. MERCon 2017, no. May, pp. 105–110, 2017, doi:

10.1109/MERCon.2017.7980465.

[6] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi,

“Mining concepts from code with probabilistic topic models,”

ASE’07 - 2007 ACM/IEEE Int. Conf. Autom. Softw. Eng., no.

January, pp. 461–464, 2007, doi: 10.1145/1321631.1321709.

[7] A. T. Nguyen et al., “API code recommendation using statistical

learning from fine-grained changes,” Proc. ACM SIGSOFT Symp.

Found. Softw. Eng., vol. 13-18-Nove, pp. 511–522, 2016, doi:

10.1145/2950290.2950333.

[8] S. Vargas-Baldrich, M. Linares-Vásquez, and D. Poshyvanyk,

“Automated tagging of software projects using bytecode and

dependencies,” Proc. - 2015 30th IEEE/ACM Int. Conf. Autom.

Softw. Eng. ASE 2015, pp. 289–294, 2016, doi:

10.1109/ASE.2015.38.

[9] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language

model for code,” Proc. - Int. Conf. Softw. Eng., vol. 1, pp. 858–868,

2015, doi: 10.1109/ICSE.2015.336.

[10] X. Liu, L. G. Huang, and V. Ng, “Effective API recommendation

without historical software repositories,” ASE 2018 - Proc. 33rd

ACM/IEEE Int. Conf. Autom. Softw. Eng., pp. 282–292, 2018, doi:

10.1145/3238147.3238216.

[11] H. Alrubaye, M. W. Mkaouer, and A. Ouni, “MigrationMiner: An

Automated Detection Tool of Third-Party Java Library Migration at

the Method Level,” Proc. - 2019 IEEE Int. Conf. Softw. Maint. Evol.

ICSME 2019, pp. 414–417, 2019, doi: 10.1109/ICSME.2019.00072.

[12] A. Gyori, B. Lambeth, A. Shi, O. Legunsen, and D. Marinov,

“NonDex: A tool for detecting and debugging wrong assumptions on

Java api specifications,” Proc. ACM SIGSOFT Symp. Found. Softw.

Eng., vol. 13-18-Nove, pp. 993–997, 2016, doi:

10.1145/2950290.2983932.

[13] “ASM.” [Online]. Available: https://asm.ow2.io/. [Accessed: 10-

Feb-2021].

[14] “Apache Lucene - Welcome to Apache Lucene.” [Online].

Available: https://lucene.apache.org/. [Accessed: 10-Feb-2021].

6

