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Abstract: The use of satellite-based Remote Sensing (RS) is a well-developed field of research. RS
techniques have been successfully utilized to evaluate the chlorophyll content for the monitoring of
sugarcane crops. This research provides a new framework for inferring the chlorophyll content in
sugarcane crops at the canopy level using unmanned aerial vehicles (UAVs) and spectral vegetation
indices processed with multiple machine learning algorithms. Studies were conducted in a sugarcane
field located in Sugarcane Research Institute (SRI, Uda Walawe, Sri Lanka), with various fertilizer
applications over the entire growing season from 2020 to 2021. An UAV with multispectral camera
was used to collect the aerial images to generate the vegetation indices. Ground measurements
of leaf chlorophyll were used as indications for fertilizer status in the sugarcane field. Different
machine learning (ML) algorithms were used ground-truthing data of chlorophyll content and
spectral vegetation indices to forecast sugarcane chlorophyll content. Several machine learning
algorithms such as MLR, RF, DT, SVR, XGB, KNN and ANN were applied in two ways: before feature
selection (BFS) by training the algorithms with all twenty-four (24) vegetation indices with five (05)
spectral bands and after feature selection (AFS) by training algorithms with fifteen (15) vegetation
indices. All the algorithms with both BFS and AFS methods were compared with an estimated
coefficient of determination (R2) and root mean square error (RMSE). Spectral indices such as RVI
and DVI were shown to be the most reliable indices for estimating chlorophyll content in sugarcane
fields, with coefficients of determination (R2) of 0.94 and 0.93, respectively. XGB model shows the
highest validation score (R2) and lowest RMSE in both methods of BFS (0.96 and 0.14) and AFS (0.98
and 0.78), respectively. However, KNN and SVR algorithms show the lowest validation accuracy
than other models. According to the results, the AFS validation score is higher than BFS in MLR, SVR,
XGB and KNN. Even though, validation score of the ANN model is decreased in AFS. The findings
demonstrated that the use of multispectral UAV could be utilized to estimate chlorophyll content and
measure crop health status over a larger sugarcane field. This methodology will aid in real-time crop
nutrition management in sugarcane plantations by reducing the need for conventional measurement
of sugarcane chlorophyll content.

Keywords: chlorophyll; machine learning; multispectral imagery; remote sensing; sugarcane; UAV;
vegetation indices
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1. Introduction

The use of UAVs for agriculture and plant biosecurity is rapidly increasing [1–6] and
the use of UAV remote sensing for precision agriculture (PA) has grown dramatically [7].
The use of unmanned aerial vehicles (UAVs) for remote sensing (RS) has developed rapidly
as a method of capturing high-resolution images from the near surface of the Earth [8–13].
Several remote sensing applications have proven to be a valuable source of reflectance
data for estimating various crop canopy variables relating to biophysical, physiological, or
biochemical properties [14]. Many criteria of crop monitoring have already been proved
to be relevant to remote sensing data and methodologies [15]. Remote sensing methods
enable monitoring the agriculture field by detecting variations in the chlorophyll content
with a large area for a short time [16]. Remote sensing of plant spectral responses has been
demonstrated to be a promising method for capturing changes in vegetation attributes
while also providing a non-destructive approach [17].

The evolving UAV platforms provide several benefits (for example, they are economi-
cal, versatile, and less affected by environmental variables), as well as their capability to
collect high temporal and spatial resolution data [18]. Advances in low-altitude remote
sensing technology, such as UAVs, provide a high temporal and spatial resolution solu-
tion for non-destructive, quick, and accurate assessment of various crops’ biophysical
parameters [19]. Satellite and manned aircraft-based remote sensing platforms can also
monitor crop status across large fields and measure numerous crop and environmental
parameters in real time based on precise spectral information. However, limited spatial and
temporal resolution and expensive equipment costs are the major constraints in satellite
remote sensing over UAV applications. Even though are highly sensitive to environmental
factors [20] and UAV payload limitations and flying time is lower than those possible with
satellite or manned aircraft remote sensing [20], UAV is however a viable technology and a
good aerial platform for farmers, with high spatial and temporal resolution benefits [21,22].

UAV remote sensing platforms equipped with different sensors including RGB, mul-
tispectral and hyperspectral cameras have emerged as a viable option for rapid high-
throughput phenotyping due to their flexibility and convenience, on-demand data access,
and high spatial resolution [23,24] illustrated the application and suitability of different
UAV cameras used in smart farming. RGB cameras are highly suited for the determination
of canopy height and lodging. In contrast, multispectral cameras are highly suited for
drought stress detection, pathogen detection, estimation of nutrients, determination of
growth vigour, yield prediction, and hyperspectral and multispectral cameras are more suit-
able for the identification of pests and disease, weed detection and estimation of nutrient
status [25].

Sugarcane (Saccharum officinarum) is a perennial crop commonly planted through-
out the tropical and subtropical regions in the world [26]. Many natural and manmade
disturbances and stressors directly impact chlorophyll content, which is the principal
pigment that drives photosynthesis [16]. The accurate measurement of leaf chlorophyll
concentration is critical for examining overall plant health, regulating fertilizer application,
and other inputs [17]. The chlorophyll content is associated with nitrogen concentration
in vegetation and is an indicator of photosynthetic activity [15]. Traditional methods for
pigmentation analysis, such as spectrophotometers, leaf destruction, or high-performance
liquid chromatography (HPLC), cannot quantify changes in pigmentation over a short
time [19]. Furthermore, these technologies are time-consuming, costly, and assessing the
health of the crops is unfeasible. As a result, these methods have limitations in monitoring
crop nutritional status over a large area and greatly discourage monitoring crops. As a
result, reliable, efficient, and practical methods for estimating this biophysical parameter
are required [19,27,28].

1.1. Application of Remote Sensing on Sugarcane Crops

Studying the spectrometric response of leaves is essential because spectral properties
are linked to non-destructive plant growth and health monitoring [29]. Plant nutritional
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analysis has been made easier because spectral vegetation indices were collected from UAV
images and machine learning techniques [30]. Bei Cui et al. [31] designed a new method
for estimating chlorophyll content in winter wheat based on crop canopy reflectance with
low sensitivity to the leaf area index (LAI) and consistent sensitivity to various crop growth
situations. Gitelson et al. [32] established the conceptual model to estimate chlorophyll in
maize and soybean canopies remotely, critical for regional and global carbon balance and
fertilizer management. Ballester et al. [33] performed experiments to verify that the green,
red vegetation index (GRVI), and the red edge ratio (RE/R) derived from UAS imagery
could be used to monitor the effects of soil water status in cotton crop.

Nitrogen deficiency reduces the leaf chlorophyll concentration, enhancing the leaf’s
transmittance at visible wavelengths. As a result, reflected radiation from crop has been
used to measure chlorophyll content. These pigments have diverse spectrum behaviour
with particular absorption properties at different wavelengths, allowing the estimation of
the chlorophyll concentration by remote sensing tools [19]. Spectral indices are a strong
remote sensing feature for measuring plant nitrogen concentrations [34]. Therefore, spectral
vegetation analysis is a viable alternative for estimating plant health [30]. On the other
hand, those indices result from a combination of responses to changes in a variety of
vegetation and environmental variables, such as the LAI and leaf chlorophyll content [15].
Syed Haleem Shah et al. [17] used standard statistical methodologies in conjunction with
random forest regression algorithm machine learning (ML) techniques with 45 existing
vegetation indices to assess the potential of hyperspectral data to estimate chlorophyll in
wheat. A typical univariate regression ML analysis was used as a baseline to model the
association between observed chlorophyll and the selected vegetation indices.

1.2. Machine Learning for Crop Health and Chlorophyll Content

ML algorithms have recently been applied to a variety of remote sensing applications
to monitor and measure crop health and parameters [35]. ML approaches try to create
an empirical relationship between the independent factors and yield, giving them the
advantage of forecasting production without relying on specific crop attributes [36]. neural
networks (ANN), random forests (RF), support vector machines (SVM), decision trees
(DT), and other algorithms are useful for UAV-based image processing [30]. Multiple
linear regression (MLR) is a statistical technique that predicts the outcome of a dependent
variable using multiple independent variables. The RF Regression is a supervised learning
approach for regression that uses the ensemble learning technique for remote sensing-
based agricultural research projects [17,37]. The decision tree (DT) uses a tree topology
to generate regression or classification models. It incrementally cuts down a dataset into
smaller sections while simultaneously developing an associated decision tree. Support
vector regression (SVR) is based on the same premise as SVM, but it is used to solve
regression problems. Support vector regression (SVR) is a regression technique that is an
extension of support vector machine (SVM). SVR develops an ideal separating hyperplane
in order to distinguish classes that overlap and are not linearly separable. In this scenario, a
huge modified feature space is produced to map the data and then separated along a linear
boundary using kernel functions [38].

ML technologies have been used to predict crop parameters [37]. For example, win-
ter wheat biomass estimation was carried out using the visualization approach for SVR
and the investigation of influential textures [39]. Extreme gradient boosting (XGB) is a
class of ensemble machine learning techniques for classification and regression predictive
modelling tasks. It is an effective gradient boosting implementation that may be used for
predictive regression modelling. K-Nearest neighbors (KNN) regression, RF, SVR are a
non-parametric technique that approximate the connection between independent variables
and the continuous outcome. Computations and mathematics are used in the ANN model
to imitate human–brain processes. That of a biological nervous system influences the
architecture format of the ANN models. The ANN models are composed of a complex and
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nonlinear network of neurons like the real brain. Han et al. [40] showed that ANN is more
effective than random forest regression in calculating maize above-ground biomass.

Zhang et al. [18] used four structure VIs and two chlorophyll VIs, as well as three regres-
sion algorithms (MLR, ANN and RF) in a maize field in Inner Mongolia, China, to measure
the maize chlorophyll and vegetation indices (VIs) to crop water stress. Moran et al. [41]
looked at using narrowband vegetation indices and multivariate approaches like PLSR and RF
regression to estimate forest canopy chlorophyll content from airborne hyperspectral data. [26]
used spectral data from a spaceborne hyperspectral image to determine sugarcane canopy
nitrogen concentration spatial variation using MLR and SVR. Xu et al. [42] used six regression
algorithms, including MLR, SMR, KRLS, GLM, GBM and RF, to assess the yield using a ML
with UAV-lidar data in sugarcane crops. The Table 1 illustrate the different ML algorithms
and their equations and optimal hyperparameter values.

Table 1. Different ML models, general equation and Hyperparameter values.

No Models Equation Hyper Parameter and
Optimum Values

1 MLR

R2 = 1 − SSres
SStot

where;
R2: R-squared
SSres: residual sum of squares
SStot: total sum of squares.

RMSE =

√
∑n

i=1
((ŷi−yi)

2)
n

where;
RMSE: root mean square error
ŷ1, ŷ2. . . , ŷn are predict values
y1, y2 . . . , yn are observed
values
n is the number of observations

normalize = True

2 RF

Bootstrap = True
max_depth = 10
n_estimators =150
random_state = 11

3 DT
criterion = mse
random_state = 0
max_depth = 9

4 SVR kernel = rbf

5 XGB

learning_rate = 0.001
max_depth = 20
n_estimators = 200
use_label_encoder = False

6 KNN

n_neighbors = 23
weights = uniform algorithm =
auto
leaf_size = 30

7 ANN
learning_rate = 0.0001
epochs = 7000
batch_size = 100 validation

Canata et al. [43] used Sentinel-2 multi-temporal imagery data to experiment and
found that the RF regression method enabled the development of predictive yield models
for commercial sugarcane fields, with the authors concluding that the RF regression method
was more accurate (lower RMSE and higher R2) than the MLR. RF has lately gained
popularity in remote sensing research for classification and regression. The RF algorithm’s
variable importance plot is particularly good at detecting the most important input variables
in the model [41]. Using spectral vegetation indices computed from UAV-imagery and
the RF method Osco et al. [30] provided a new framework to infer nitrogen content in
citrus trees at a canopy level. Feng et al. [36] used UAV-based hyperspectral imaging and
ensemble learning to forecast alfalfa yield using SVR, KNN, and RF. Lee et al. [44] used
three empirical methods (linear regression, RF, and SVR to statistically connect spectral data
and nitrogen levels in two corn fields in Canada. Combining machine learning techniques
with spectral vegetation indices is a relatively new advanced practice to overcome the
limitation of the conventional method of determining the amount of chlorophyll in plants
which is time-consuming and labour-intensive [30].

Only a few studies have found a link between leaf nitrogen levels and chlorophyll
content. Therefore, a major goal of this paper was to assess high-resolution multispectral
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UAV images for non-destructive measurement of the chlorophyll content of sugarcane
crops. There were three sub-objectives; (1) to correlate the vegetation indices with the
variations of the chlorophyll in the field; (2) to compare the validation performance of the
before feature selection (BFS) and after feature selection (AFS) approaches in selected ML
models; and (3) to assess the prediction performance on prediction of chlorophyll content
by different ML methods.

2. Methodology
2.1. Study Site

The study was carried out during September 2021 sugarcane growing season in a
1512 m2 field located in Sugarcane Research Institute (SRI), Uda Walawe, Sri Lanka as
shown in the Figure 1. The sugarcane variety of SL 96 128 was planted on the reddish-brown
earth (RBE) in the sugarcane field.
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Figure 1. UAV Experimental Area at SRI.

Average climatic (Table 2) during the study period was collected from a weather
station located at the SRI, Uda Walawe.

Table 2. Average climate data at the study site for September.

Parameter Reading

Average air temperature 27.98 ◦C
Maximum air temperature 23.5 ◦C
Minimum air temperature 34.0 ◦C

Minimum relative humidity 50%
Maximum relative humidity 71%

Average wind speed 4.2 km/h

2.2. Experimental Design

The whole sugarcane field was allocated into twelve (12) fertilizer treatments with
three replications, as shown in Figure 2 and Table 3. Altogether thirty-six (36) blocks
(7 × 6 m2) were designed for each treatment, and 90 three-budded setts were planted per
block. Two sampling sites of subblock (1.5 × 1.5 m2) were selected randomly in each block
as average canopy area of each plant is 1.5 m2.
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Table 3. Different fertilizer applications.

Treatment No Treatment

T1 Fertilizer mixture (FM) 1 (Provide 80% from SRI recommended nutrient level)
T2 FM 1 (Provide 65% from SRI recommended nutrient level)
T3 FM 1 (Provide 50% from SRI recommended nutrient level)
T4 FM 2 (Provide 80% from SRI recommended nutrient level)
T5 FM 2 (Provide 65% from SRI recommended nutrient level
T6 FM 2 (Provide 50% from SRI recommended nutrient level
T7 100% from SRI recommendation
T8 80% from SRI recommendation
T9 75% from SRI recommendation + 25% Compound fertiliser
T10 65% from SRI recommendation
T11 50% from SRI recommendation
T12 Zero Fertilizer

FM 1: carbamide + triple superphosphate (TSP) + muriate of potash (MOP) + compost (1:4). FM 2: carbamide +
MOP + compound fertiliser + compost (1:4).

2.3. Ground Truth Data Collection

This study used ground measurements of chlorophyll SPAD reading as references for
sugarcane nutrient status, as shown in Figure 3. Chlorophyll content was collected using
the SPAD-502 plus chlorophyll meter (accuracy of ±1.0, Konico Minolta optics Inc Osaka,
Japan). Three upper side of the leaves were selected to measure the SPAD readings within
the each subblock. A total of 216 SPAD readings were collected during the vegetative stage
of the 5-month-old plant to build the different ML models, and the sample locations were
geo-located using a Triton 2000 handheld GPS receiver (Magellan, CA, USA).
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2.4. Acquisition and Preprocessing of UAV Multispectral Images

A DJI P4 multispectral system (Da-Jiang Innovations (DJI), Shenzhen, Guangdong,
China) was used to conduct a UAV flight mission on a sunny day between 12.30 pm
and 02.00 pm (Sri Lankan standard time) during the sugarcane growing season. The
visible to the near-infrared spectral range of the DJI P4 multispectral camera has five bands
(blue, green, red, red edge, and near infrared) at 450.0, 560.0, 650.0, 730.0 and 840.0 nm,
respectively. The flight altitude above ground, speed, and ground sample distance, were
15 m, 6 m·s−1 and 1.42 cm, respectively. The front and side overlap of images on the flight
line was 80 % and 70 %, respectively, as shown in Table 4. Six ground control points (GCPs)
were used to improve geolocation accuracy for post-image processing. The image mosaic
processing was carried out with Agisoft Metashape (Version-1.6.6, Agisoft LLC, Petersburg,
Russia).

Table 4. UAV Flight Mission.

Height 15m

Ground Sampling Distance (GSD) 1.42 cm/px
Speed 6 ms−1

Overlap Front-80% & Side-70%
Time 12.30–02.00 p.m.

2.5. Estimation of Vegetation Indices

The values of reflectance in the red, green, blue, red edge and NIR portions of the
electromagnetic spectrum of UAVs were used to generate several VIs. Twenty-four (24)
VIs were estimated, as shown in Table 5 to demonstrate the feasibility of calculating
sugarcane vegetation indices to predict the chlorophyll content. Two rectangle regions
of interest (ROI) were identified based on the GPS coordinates collected during ground
truth measurement in each block on the aerial vegetation index map. The average VIs
inside the ROI was determined. Generation of vegetation Indices and extraction of index
values were performed using the Open-Source Geographic Information System of QGIS
(version-3.20) [45].
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Table 5. Vegetation indices calculation.

No Vegetation Indices Formula Purpose References

01 Normalized Difference
Vegetation Index (NDVI) NDVI = NIR − R

NIR + R
Estimation of vegetation
biomass, [43]

02 Green Normalized Difference
Vegetation Index (GNDVI) GNDVI = NIR − G

NIR + G

Estimation of vegetation
fraction, Estimation of
productivity and assess
phylogenetic heritability,
Discrimination of
field-grown olive cultivars

[44,46]

03 Normalized Difference Red
Edge Index (NDRE) NDRE =

NIR − Red Edge
NIR + Red Edge

Detect Differences in
Vegetation and Chlorophyll
Content., Early stress
detection, Growth
monitoring

[47–49]

04 Leaf Chlorophyll Index (LCI) LCI =
NIR − Red Edge

NIR + R
Early detection of pine wilt
disease [50]

05 Difference Vegetation Index
(DVI) DVI = NIR − R

Prediction of green LAI of
crop canopies, Comparison
of different reflectance
indices for vegetation
analysis, discriminate
field-grown olive cultivars

[46,51,52]

06 Ratio Vegetation Index (RVI) RVI = NIR
R

Early detection of pine wilt
disease [50]

07 Enhanced Vegetation Index
(EVI) EVI = 2.5(NIR − R)

NIR + 6R −7.5B +1)
Early detection of pine wilt
disease [50]

08 Triangular Vegetation Index
(TVI) TVI = 60(NIR − G) − 100(R − G) Early detection of pine wilt

disease [50]

09 Green Chlorophyll Index
(GCI) GCI = NIR

G − 1
Estimation of leaf area index
and green leaf biomass [52,53]

10 Green Difference Vegetation
Index (GDVI) GDVI = NIR − G

Generalized Difference
Vegetation Index (GDVI)
estimate productivity and
assess phylogenetic
heritability

[45,46,54]

11 Normalized Green Red
Difference Index (NGRDI) NGRDI = (G − R)

(G + R)
Monitoring of crop biomass [46,55]

12 Modified Soil-Adjusted
Vegetation Index (MSAVI)

MASVI =
(2 × NIR + 1 − sqrt ((2× NIR + 1)2 − 8 × (NIR − R)))

2

Significant remote sensing
vegetation indices [56]

13 Atmospherically Resistant
Vegetation Index (ARVI) ARVI = (NIR − (R − 2 × (B − R)))

(NIR + (R − 2 × (B − R)))
Significant remote sensing
vegetation indices [56]

14 Structure Insensitive Pigment
Index (SIPI) SIPI = (NIR − B)

(NIR − R)
Mapping the sugarcane [57]

15 Optimized Soil-Adjusted
Vegetation Index (OSAVI) OSAVI = 1.16 × (NIR − R)

NIR + R + 0.16
Extraction of land cover
information [58]

16
Green Optimized Soil
Adjusted Vegetation Index
(GOSAVI)

GOSAVI = NIR−G
NIR + G + 0.16

Extraction of land cover
information [58]

17 Excess Green (ExG) ExG = 2G − R − B
R + G + B Vine diseases detection [59]

18 Excess Red (ExR) ExR = 1.4R − G
R + G + B Vine diseases detection [59]

19 Excess Green Red (ExGR) ExGR = ExG − ExR Vine diseases detection [59]

20 Green Red Vegetation Index
(GRVI) GRVI = R − G

R + G Vine diseases detection [59]

21 Normalized Difference Index
(NDI) NDI = G − R

G + R Vine diseases detection [59]

22 Red Green Index (RGI) RGI = R
G Vine diseases detection [59]

23
Enhanced Normalized
Difference Vegetation Index
(ENDVI)

ENDVI = ((NIR + G) − (2B))
((NIR + G) + (2B))

Mapping the sugarcane [57]

24 Simple Ratio Index (SRI) SRI = NIR/R
Evaluation of the saturation
property of vegetation
indices

[60,61]

2.6. Machine Learning Modelling and Statistical Analysis

Statistical analysis was used to examine and establish an association between the
UAV-derived vegetation indices and ground-truthing SPAD reading through different
machine learning modelling by using Python (version 3.8.10). One of the feature selection
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techniques of Pearson’s correlation coefficient was utilized to select which vegetation
indices were most sensitive to chlorophyll, and the highest correlation coefficients (R2)
values from reflectance features were used to develop machine learning algorithms to
predict the sugarcane chlorophyll content accurately. In this study, seven (07) machine
learning regression algorithms, MLR, RF, DT, SVR, XGB, KNN and ANN were compared
to predict the sugarcane chlorophyll concentration based on VIs derived from reflection
images. The root means square error (RMSE) and the coefficient of determination or
validation score (R2) were calculated for training and validation to compare and select
the best-fit algorithm for chlorophyll prediction in the sugarcane field. In statistics and
machine learning, feature selection refers to the process of selecting a subset of relevant
features (predictors and variables) for inclusion in a model. It is the process of automatically
selecting the data qualities (such as columns in tabular data) that are most significant and
pertinent to the predictive modelling challenge at hand. It is mean that to minimize the
number of input variables to those that are deemed to be most beneficial in predicting
the target variable. According to the previous studies mentioned in the Table 4, 24 VIs
were selected to correlate the ground truth measurement. After estimating the correlation
values for all VIs (before feature selection), 15 VIs were selected (after feature selection)
based on the Pearson correlation values greater than 50% (±0.5) to improve the model
performance and reduce the training time for the development of ML models. Finally total
of 216 samples were used to build the different ML models.

3. Results
3.1. One Way ANOVA Statistical Analysis for Different Treatments and Chlorophyll Content

A one-way ANOVA test was performed to estimate the significant relationship be-
tween all twelve (12) fertilizer treatments and sugarcane chlorophyll content. The result
shows a significant interaction (p = 0.001) between all fertilizer treatment and chlorophyll
content. Figure 4 shows the comparing the treatment means and variability of chlorophyll
reading, and Figure 5 shows the quantile-quantile (Q-Q) plot confirming that the data were
adequately close to the theoretical reference line, representing a soundly model fit.
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3.2. Correlation between Vegetation Indices and Sugarcane Chlorophyll Content

The Pearson’s correlation coefficients (R2) for the relationship between VIs and sugar-
cane chlorophyll content are shown in Figure 6 and detailed correlation matrix shown in
Figure A1 (Appendix A). Pearson’s correlation test was performed to select the essential
features crucial for training the ML algorithms. The RVI showed the highest positive corre-
lation with the chlorophyll content (R2 value: 0.94), and DVI also had stronger correlations
with chlorophyll content (R2 value: 0.93). Next to the RVI and DVI, other vegetation indices
such as NDRE, GNDVI, LCI, EVI, and NDVI showed positive correlation coefficients of
0.86, 0.86, 0.85, 0.84, and 0.82, respectively.

3.3. Prediction of Sugarcane Chlorophyll Content by Using Machine Learning Algorithms

Different ML techniques including MLR, RF, DT, SVR, XGB, KNN and ANN were
developed in two methods. The first is before feature selection (BFS)—training the algo-
rithms with all twenty-four (24) vegetation indices and five (05) spectral bands; The second
method is after feature selection (AFS)—training the algorithms with selected fifteen (15)
vegetation indices. The two methods were compared with the estimated coefficient of
determination (R2) and root mean square error (RMSE), as shown in Figure 7.

As shown in Table 6, XGB model shows the highest validation score (R2) and lowest
RMSE in both methods of BFS (0.96 and 0.14) and AFS (0.98 and 0.78), respectively. As for
RF, both R2 values derived from the validation data set were lower than the XGB. Also, the
MLR model also shows a good training and validation score in both methods. However,
KNN and SVR algorithms show the lowest validation accuracy than other models. When
comparing the two approaches, the AFS validation score increases in MLR, SVR, XGB and
KNN. Even though RF and DT show no changes in validation score in both methods, the
validation score of the ANN model decreases in AFS.
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Table 6. Performance comparison of the different ML models.

ML Model
R2 (Training) R2 (Validation) RMSE

BFS AFS BFS AFS BFS AFS

MLR 0.95 0.93 0.82 0.83 2.14 2.09
RF 0.99 0.99 0.95 0.95 1.11 1.09
DT 1.00 1.00 0.94 0.94 1.21 1.25

SVR 0.74 0.85 0.65 0.78 3.02 2.37
XGB 0.99 0.99 0.96 0.98 0.14 0.78
KNN 0.69 0.73 0.68 0.75 3.42 3.18
ANN 0.98 0.98 0.87 0.76 1.83 2.48

MLR: Multiple linear regression; RF: Random Forest regression; DT: Decision tree regression; SVR: Support vector
regression; XGB: eXtreme Gradient Boosting; KNN: k-nearest neighbors; ANN: Artificial neural network; BFS: Before
feature selection; AFS: After feature selection; R2: Coefficient of determination; RMSE: Root mean square error.
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4. Discussion

In this study, we compared canopy level multispectral data to estimate leaf chlorophyll
in sugarcane crops using different ML architecture. Chlorophyll has long been thought to be
the most crucial pigment for detecting nutritional stress. When sugarcane canopy structure
was more responsive to nutrient stress, the results demonstrated that the chlorophyll
content could only assess sugarcane nutrient stress. Chlorophyll concentration drops when
nutrient stress occurs and causes structural or colour changes identified as visual nutrient
stress symptoms. The use of ML architectures including MLR, RF, DT, SVR, XGB, KNN, and
ANN comparing (1) all spectral bands and (2) selected VIs as well as regressions analysis
using existing VIs were investigated.

4.1. Basic Statistical Analysis

An initial ANOVA test was used to determine whether or not the treatment results of
an experiment are significant, and F-distribution was used to compare two means from
two independent variables of VIs using a one-way ANOVA [62]. As shown in Figure 4,
the result is statistically significant, which indicates that the two means are unequal. This
test confirms the conducted fertilizer treatments are significantly different from each other.
Therefore, we can confirm that all the fertilizer treatments show significant variation among
them, which is important to develop efficient ML models to predict sugarcane chlorophyll
content. After confirming the ANOVA outputs, the pearson’s correlation coefficients (R2) for
the relationship between UAV-derived VIs and sugarcane chlorophyll content are estimated
to select the essential features crucial for training the ML algorithms. The highly correlated
input variables including RVI, DVI, NDRE, GNDVI, LCI, EVI, and NDVI are linked with
the target. In this study, we used an absolute number, such as 0.5, as the variable selection
threshold. If the predictor variables are found to be associated, the variable with the lowest
correlation coefficient value with the target variable is discarded. However, other features
selection techniques such as chi-square test, Fisher’s score, variance threshold, mean
absolute difference (MAD), forward feature selection, and backward feature elimination
can also be used in different ML studies. Therefore, future studies can be compared the
different feature selection methods for the forecast of chlorophyll to find the best prototype
model [63].
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4.2. Machine Learning Approach Using Multispectral Bands and VLs

The ML models evaluated; MLR, RF, DT, SVR, XGB, KNN, and ANN are all good at
handling a continuous dependent variable that is correlated with VIs. The use of spectral
vegetation indices in conjunction with machine learning models proved to be an effective
method for predicting chlorophyll content consistent with [64], and spectral indices have
proven to be an essential technique for evaluating nitrogen [14]. This study did not remove
the soil from the reflectance map to estimate vegetation indices because the crop completely
covered the soil during the experimental period. However, it is necessary to remove the
soil for estimation of VIs during the early stage of sugarcane crops as an aerial map can
be shown the soil between the sugarcane crops. We used 80% of the available VIs as
input training data and 20% as validation data to estimate the machine learning model’s
performance on new data. Best fit line plots were generated to compare all ML models
using both BFS and AFS methods, as illustrated in Figure 7. The line of best fit is a line
that runs through a scatter plot of data points and best reflects the relationship between
them [65]. The regression ML analysis output can be used to predict the chlorophyll content
over variation in VIs. The red line in Figure 8 is referred to as the best fit straight line for
each model.

Figure 9 shows the learning curves of MLR, RF, DT, SVR, XGB, KNN and ANN to
evaluate the model learning performance over training instances. The shadow green
and blue represent the standard deviation of accuracy, while the lines show the mean
accuracy values in the proposed models. Learning curves are a common diagnostic tool
for algorithms that learn progressively from a training dataset in ML [66]. The model’s
performance improves over time, indicating that the model is learning and improving [67].
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When all spectral bands were utilized as input predictors, the results showed that the
XGB technique delivers a higher retrieval accuracy than other models. XGB has recently
been demonstrated to be a highly effective machine learning technique for mapping in
RS, and it is capable of performing well even with limited training data [68,69]. Yang
et al., 2021 conducted experiments on wheat SPAD estimation utilising cluster-regression
algorithms using UAV hyperspectral data, and the results indicated that the XGB model
beat the random forest model somewhat in estimating wheat SPAD. Therefore, the XGB
algorithm may be used for fertiliser treatments in precision agriculture [70]. Also, MLR,
RF, and DT models show a good training and validation score in both methods of BFS and
AFS. Although the ANN outperformed the SVM and LR algorithms, it produced results
that were considered inferior to the RF and DT methods [71,72]) because ANN approaches
were favored over other types of spectral information for predicting crop nitrogen stress
and mapping vegetation. Additionally, different types of plant stress have been identified
using ANNs and multispectral data [73]. We observed that XGB, MLR, RF, DT show almost
the same training and validation score in this study. However, The RF method shows the
best accuracy of 90% than other models of SVM and MLR in the previous study to estimate
the chlorophyll content conducted by Osco et al. [42].
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Our findings revealed that feature selection techniques can increase prediction accu-
racy in many models, including MLR, SVR, XGB and KNN however, these techniques were
less important in the ANN model. This procedure is carried out to reduce the number
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of input features while maintaining the model’s predicted accuracy. We looked at a total
of 24 spectral indices, which is more than prior research of this type have done [42]. to
previous studies of Ballester et al. [74] and Zeng & Chen, [75], when a single VI was used to
create an association with chlorophyll using basic linear regressions, the R2 of the generated
relationships had significant fluctuates in values. When using a lower number of spectral
indices, the XGB model helped to increase the algorithm’s accuracy [42]. This suggests that
the number of spectral indices utilized might be reduced while still obtaining extremely
accurate results [42]. This information is critical since it aids new research in reducing the
amount of processed data, which has an impact on training and testing times [42].

SVMs and KNN are frequently utilised when scientists are confronted with a huge
number of features and a high degree of sparsity [74]. Although the SVM and KNN algo-
rithm’s prediction accuracy was lower than that of the other algorithms in this investigation
due to the selection of important features of this study. Previous research has also indicated
an increase in SVM and KNN performance when specified variables are used [74]. This
could be because picking relevant variables improves the SVM and KNN performance by
increasing its interpretability, computational efficiency, and generalisation performance [74].
Furthermore, SVM and KNN algorithms are more sensitive to the quality of data than other
algorithms which may lead to reduced performance of this prediction model.

This study is very important for the current fertiliser trial at SRI at Uda Walawe because
chlorophyll measurement should be taken every two weeks to compare and analyse the
effect of variation in different fertiliser treatments. However, it is very difficult and needs
more time with labourers using SPAD meters. Therefore, this proposed ML model can be
used to measure the chlorophyll content every two weeks at a large sugarcane field if we
use UAV and ML techniques. Further, measuring chlorophyll by SPAD may be produced
inaccurate reading due to leaf structure, water content and leaf pigment distribution [76].
Environmental factors including light intensity can also affect the light transmittance of a
leaf, resulting in incorrect measurement of chlorophyll content. Therefore, the application
of UAV, multispectral camera and AI can be an effective solution for fertiliser trails for
sugarcane crops.

4.3. Limitations of the Experimental and Modelling Approach

The small number of samples (216 samples) is a limitation of this study. Though RF
is suitable for modest amounts of sampling data, the RF model’s performance is linked to
the sample size, and the more sample points there are, the more accurate the forecasts [76],
the predicted model may not be suitable for discriminating crop chlorophyll content from
different growth stages as this research was done for 5-month-old sugarcane crops. In the
modelling approach, manual hyper parameter tuning was performed to obtain the best model
for all the ML algorithms including MLR, RF, DT, SVR, XGB, KNN and ANN, so future work
using grid-searching, which is the process of scanning the data to align best parameters for a
given model with minimal human effort, can be employed. This study focused on regression
ML models. Therefore, further studies should be needed to develop the chlorophyll prediction
model by ML and DL classification techniques with grid searching methods for different
stages of sugarcane crops and various environmental conditions.

5. Conclusions

Chlorophyll is an important crop biophysical feature to measure crop health and
create early predictions. This current study looked at the viability of using multispectral
UAV images to predict the chlorophyll content of sugarcane crops in SRI, Sri Lanka. A
SPAD chlorophyll meter acquired ground-truthing data of the sugarcane chlorophyll
contents to correlate the different vegetation indices for ML. Different ML models were
compared for several vegetation indices and the chlorophyll content of sugarcane crops to
construct a prediction model for sugarcane chlorophyll content. Among the other indices
utilized in the study, RVI and DVI revealed a strong and positive correlation with the
chlorophyll content of sugarcane crops. The results show that the XGB technique delivered
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a higher retrieval accuracy than other models when all spectral bands were utilized as input
predictors. The most important finding of this study is that spectral signals derived from
space multispectral data offer useful information for quantifying sugarcane chlorophyll
content over greater geographic areas for implementing proper farm management. Due
to practical constraints, the agronomical approach of collecting leaf tissue and performing
chemical analysis in the laboratory is time consuming and spatially limited. This research
and the use of UAVs with AI can positively impact fertilization procedures and lead to more
accurate yield projections. With the success of predicting the chlorophyll content across
larger geographic areas using spaceborne multispectral data, cane growers will be able to
monitor the nutritional state of their sugarcane early and address nutrient deficient areas
with appropriate management. In further work on the proposed approach for estimating
chlorophyll content, this has to be tested in different sugarcane fields with different varieties
and must be validated for the different growing stages of sugarcane crops.

Author Contributions: A.N. conducted the UAV flight mission, analysis and prepared the manuscript
for final submission as a corresponding author. F.G. provided overall supervision and contributed to
the writing and editing. A.S.A.S. provide the technical guidance to conduct the UAV flight mission
and research design and provide the feedbacks on draft manuscript. U.W.L.M.K., H.A.S.W. and B.R.K.
developed the experimental design in the field and carried out the fieldwork for ground sample
collection. The version of the manuscript has been read and approved by all authors. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding and the APC was funded by Queensland
University of Technology (QUT).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the Sugarcane Research Institute, Sri Lanka for giving the
permission to conduct the UAV flight mission and ground truth data collection. We are indebted to
the anonymous reviewers for their insightful remarks on our article.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2022, 14, 1140 19 of 22

Appendix A

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 22 
 

 

Appendix A 

 
Figure A1. Correlation matrix plot between chlorophyll content and different vegetation indices 

References 
1. Vanegas, F.; Bratanov, D.; Powell, K.; Weiss, J.; Gonzalez, F. A Novel Methodology for Improving Plant Pest Surveillance in 

Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data. Sensors 2018, 18, 260. 
https://doi.org/10.3390/s18010260. 

2. Thomas, J.E.; Wood, T.A.; Gullino, M.L.; Ortu, G.; Thomas, J.E.; Wood, T.A. Diagnostic Tools for Plant Biosecurity. In Practical 
Tools for Plant and Food Biosecurity; Springer: Cham, Switzerland, 2017; pp. 209––226. https://doi.org/10.1007/978-3-319-46897-
6_10. 

3. Mcfadyen, A.; Gonzalez, L.F.; Campbell, D.A.; Eagling, D. Evaluating Unmanned Aircraft Systems for Deployment in Plant Biosecu-
rity; Queensland University of Technology: Queensland, Australia, 2014. https://doi.org/10.3/JQUERY-UI.JS. 

4. Puig Garcia, E.; Gonzalez, F.; Hamilton, G.; Grundy, P. Assessment of crop insect damage using unmanned aerial systems: A 
machine learning approach. In Proceedings of the MODSIM 2015, 21st International Congress on Modelling and Simulation, 
Gold Coast, Australia, 29 November–4 December 2015. Available online: http://www.mssanz.org.au/modsim2015/F12/puig.pdf 
(accessed on 14 January 2022). 

Figure A1. Correlation matrix plot between chlorophyll content and different vegetation indices.

References
1. Vanegas, F.; Bratanov, D.; Powell, K.; Weiss, J.; Gonzalez, F. A Novel Methodology for Improving Plant Pest Surveillance in

Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data. Sensors 2018, 18, 260. [CrossRef] [PubMed]
2. Thomas, J.E.; Wood, T.A.; Gullino, M.L.; Ortu, G.; Thomas, J.E.; Wood, T.A. Diagnostic Tools for Plant Biosecurity. In Practical

Tools for Plant and Food Biosecurity; Springer: Cham, Switzerland, 2017; pp. 209–226. [CrossRef]
3. Mcfadyen, A.; Gonzalez, L.F.; Campbell, D.A.; Eagling, D. Evaluating Unmanned Aircraft Systems for Deployment in Plant Biosecurity;

Queensland University of Technology: Brisbane City, QLD, Australia, 2014. [CrossRef]
4. Puig Garcia, E.; Gonzalez, F.; Hamilton, G.; Grundy, P. Assessment of crop insect damage using unmanned aerial systems: A

machine learning approach. In Proceedings of the MODSIM 2015, 21st International Congress on Modelling and Simulation, Gold
Coast, Australia, 29 November–4 December 2015. Available online: http://www.mssanz.org.au/modsim2015/F12/puig.pdf
(accessed on 14 January 2022).

5. Hu, Y.; Wilson, S.; Schwessinger, B.; Rathjen, J.P. Blurred lines: Integrating emerging technologies to advance plant biosecurity.
Curr. Opin. Plant Biol. 2020, 56, 127–134. [CrossRef] [PubMed]

http://doi.org/10.3390/s18010260
http://www.ncbi.nlm.nih.gov/pubmed/29342101
http://doi.org/10.1007/978-3-319-46897-6_10
http://doi.org/10.3/JQUERY-UI.JS
http://www.mssanz.org.au/modsim2015/F12/puig.pdf
http://doi.org/10.1016/j.pbi.2020.04.011
http://www.ncbi.nlm.nih.gov/pubmed/32610220


Remote Sens. 2022, 14, 1140 20 of 22

6. Sandino, J.; Pegg, G.; Gonzalez, F.; Smith, G. Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral
Sensors, and Artificial Intelligence. Sensors 2018, 18, 944. [CrossRef]

7. Zhang, T.; Su, J.; Liu, C.; Chen, W.-H. State and parameter estimation of the AquaCrop model for winter wheat using sensitivity
informed particle filter. Comput. Electron. Agric. 2020, 180, 105909. [CrossRef]

8. Seyyedhasani, H.; Digman, M.; Luck, B.D. Utility of a commercial unmanned aerial vehicle for in-field localization of biomass
bales. Comput. Electron. Agric. 2020, 180, 105898. [CrossRef]

9. Nebiker, S.; Annen, A.; Scherrer, M.; Oesch, D. A light-weight multispectral sensor for micro UAV—Opportunities for very high
resolution airborne remote sensing. Int. Arch. Photogramm. Remote Sens. Spat.-Form. Sci. 2008, 37, 1193–1200.

10. Yue, J.; Lei, T.; Li, C.; Zhu, J. The Application of Unmanned Aerial Vehicle Remote Sensing in Quickly Monitoring Crop Pests.
Intell. Autom. Soft Comput. 2012, 18, 1043–1052. [CrossRef]

11. Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative Remote Sensing at Ultra-High Resolution with UAV
Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows. Remote Sens. 2018, 10,
1091. [CrossRef]

12. Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne,
UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron. Disasters
2017, 4, 9. [CrossRef]

13. Xiang, H.; Tian, L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial
vehicle (UAV). Biosyst. Eng. 2011, 108, 174–190. [CrossRef]

14. Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized
difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [CrossRef]

15. Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction
of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [CrossRef]

16. Hoeppner, J.M.; Skidmore, A.K.; Darvishzadeh, R.; Heurich, M.; Chang, H.-C.; Gara, T.W. Mapping Canopy Chlorophyll Content
in a Temperate Forest Using Airborne Hyperspectral Data. Remote Sens. 2020, 12, 3573. [CrossRef]

17. Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A Random Forest Machine Learning Approach for the Retrieval of Leaf
Chlorophyll Content in Wheat. Remote Sens. 2019, 11, 920. [CrossRef]

18. Zhang, L.; Han, W.; Niu, Y.; Chávez, J.L.; Shao, G.; Zhang, H. Evaluating the sensitivity of water stressed maize chlorophyll and
structure based on UAV derived vegetation indices. Comput. Electron. Agric. 2021, 185, 106174. [CrossRef]

19. Tahir, M.N.; Naqvi, S.Z.A.; Lan, Y.; Zhang, Y.; Wang, Y.; Afzal, M.; Cheema, M.J.M.; Amir, S. Real time estimation of chlorophyll
content based on vegetation indices derived from multispectral UAV in the kinnow orchard. Int. J. Precis. Agric. Aviat. 2018, 1,
24–31. [CrossRef]

20. Paneque-Gálvez, J.; McCall, M.K.; Napoletano, B.M.; Wich, S.A.; Koh, L.P. Small Drones for Community-Based Forest Monitoring:
An Assessment of Their Feasibility and Potential in Tropical Areas. Forests 2014, 5, 1481–1507. [CrossRef]

21. Jang, G.; Kim, J.; Yu, J.-K.; Kim, H.-J.; Kim, Y.; Kim, D.-W.; Kim, K.-H.; Lee, C.W.; Chung, Y.S. Review: Cost-Effective Unmanned
Aerial Vehicle (UAV) Platform for Field Plant Breeding Application. Remote Sens. 2020, 12, 998. [CrossRef]

22. Themistocleous, K. The use of UAV platforms for remote sensing applications: Case studies in Cyprus. In Proceedings of the
Second International Conference on Remote Sensing and Geoinformation of Environment, Pafos, Cyprus, 7–10 April 2014;
Volume 92290S. [CrossRef]

23. Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned Aerial Vehicle Remote
Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Front. Plant Sci. 2017, 8, 1111. [CrossRef]

24. Vergouw, B.; Nagel, H.; Bondt, G.; Custers, B. Drone Technology: Types, Payloads, Applications, Frequency Spectrum Issues and
Future Developments. In The Future of Drone Use; Custers, B., Ed.; TMC Asser Press: The Hague, The Netherlands, 2016; pp. 3–20.
[CrossRef]

25. Delavarpour, N.; Koparan, C.; Nowatzki, J.; Bajwa, S.; Sun, X. A Technical Study on UAV Characteristics for Precision Agriculture
Applications and Associated Practical Challenges. Remote Sens. 2021, 13, 1204. [CrossRef]

26. Miphokasap, P.; Wannasiri, W. Estimations of Nitrogen Concentration in Sugarcane Using Hyperspectral Imagery. Sustainability
2018, 10, 1266. [CrossRef]

27. Wu, C.; Niu, Z.; Tang, Q.; Huang, W.; Rivard, B.; Feng, J. Remote estimation of gross primary production in wheat using
chlorophyll-related vegetation indices. Agric. For. Meteorol. 2009, 149, 1015–1021. [CrossRef]

28. Lu, S.; Lu, X.; Zhao, W.; Liu, Y.; Wang, Z.; Omasa, K. Comparing vegetation indices for remote chlorophyll measurement of white
poplar and Chinese elm leaves with different adaxial and abaxial surfaces. J. Exp. Bot. 2015, 66, 5625–5637. [CrossRef]

29. Fawcett, D.; Panigada, C.; Tagliabue, G.; Boschetti, M.; Celesti, M.; Evdokimov, A.; Biriukova, K.; Colombo, R.; Miglietta, F.;
Rascher, U.; et al. Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational
Conditions. Remote Sens. 2020, 12, 514. [CrossRef]

30. Osco, L.P.; Ramos, A.P.M.; Pereira, D.R.; Moriya, A.S.; Imai, N.N.; Matsubara, E.T.; Estrabis, N.; De Souza, M.; Junior, J.M.;
Gonçalves, W.N.; et al. Predicting Canopy Nitrogen Content in Citrus-Trees Using Random Forest Algorithm Associated to
Spectral Vegetation Indices from UAV-Imagery. Remote Sens. 2019, 11, 2925. [CrossRef]

31. Cui, B.; Zhao, Q.; Huang, W.; Song, X.; Ye, H.; Zhou, X. A New Integrated Vegetation Index for the Estimation of Winter Wheat
Leaf Chlorophyll Content. Remote. Sens. 2019, 11, 974. [CrossRef]

http://doi.org/10.3390/s18040944
http://doi.org/10.1016/j.compag.2020.105909
http://doi.org/10.1016/j.compag.2020.105898
http://doi.org/10.1080/10798587.2008.10643309
http://doi.org/10.3390/rs10071091
http://doi.org/10.1186/s40677-017-0073-1
http://doi.org/10.1016/j.biosystemseng.2010.11.010
http://doi.org/10.1016/S0034-4257(03)00131-7
http://doi.org/10.1016/S0034-4257(02)00018-4
http://doi.org/10.3390/rs12213573
http://doi.org/10.3390/rs11080920
http://doi.org/10.1016/j.compag.2021.106174
http://doi.org/10.33440/j.ijpaa.20180101.0001
http://doi.org/10.3390/f5061481
http://doi.org/10.3390/rs12060998
http://doi.org/10.1117/12.2069514
http://doi.org/10.3389/fpls.2017.01111
http://doi.org/10.1007/978-94-6265-132-6_1
http://doi.org/10.3390/rs13061204
http://doi.org/10.3390/su10041266
http://doi.org/10.1016/j.agrformet.2008.12.007
http://doi.org/10.1093/jxb/erv270
http://doi.org/10.3390/rs12030514
http://doi.org/10.3390/rs11242925
http://doi.org/10.3390/rs11080974


Remote Sens. 2022, 14, 1140 21 of 22

32. Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops.
Geophys. Res. Lett. 2005, 32, L08403. [CrossRef]

33. Ballester, C.; Brinkhoff, J.; Quayle, W.C.; Hornbuckle, J. Monitoring the Effects of Water Stress in Cotton using the Green Red
Vegetation Index and Red Edge Ratio. Remote Sens. 2019, 11, 873. [CrossRef]

34. Chen, P.; Haboudane, D.; Tremblay, N.; Wang, J.; Vigneault, P.; Li, B. New spectral indicator assessing the efficiency of crop
nitrogen treatment in corn and wheat. Remote Sens. Environ. 2010, 114, 1987–1997. [CrossRef]

35. De Rosa, D.; Basso, B.; Fasiolo, M.; Friedl, J.; Fulkerson, B.; Grace, P.R.; Rowlings, D.W. Predicting pasture biomass using a
statistical model and machine learning algorithm implemented with remotely sensed imagery. Comput. Electron. Agric. 2020, 180,
105880. [CrossRef]

36. Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using UAV-Based Hyperspectral
Imagery and Ensemble Learning. Remote Sens. 2020, 12, 2028. [CrossRef]

37. Zhou, X.; Yang, L.; Wang, W.; Chen, B. UAV Data as an Alternative to Field Sampling to Monitor Vineyards Using Machine
Learning Based on UAV/Sentinel-2 Data Fusion. Remote Sens. 2021, 13, 457. [CrossRef]

38. Lamichhane, S.; Kumar, L.; Wilson, B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their
implications: A review. Geoderma 2019, 352, 395–413. [CrossRef]

39. Fu, Y.; Yang, G.; Song, X.; Li, Z.; Xu, X.; Feng, H.; Zhao, C. Improved Estimation of Winter Wheat Aboveground Biomass Using
Multiscale Textures Extracted from UAV-Based Digital Images and Hyperspectral Feature Analysis. Remote Sens. 2021, 13, 581.
[CrossRef]

40. Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling maize above-ground biomass based on machine
learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 10. [CrossRef]

41. Moran, J.A.; Mitchell, A.K.; Goodmanson, G.; Stockburger, K. Differentiation among effects of nitrogen fertilization treatments
onconifer seedlings by foliar reflectance: A comparison of method. Tree Physiol. 2000, 20, 1113–1120. [CrossRef] [PubMed]

42. Xu, J.-X.; Ma, J.; Tang, Y.-N.; Wu, W.-X.; Shao, J.-H.; Wu, W.-B.; Wei, S.-Y.; Liu, Y.-F.; Wang, Y.-C.; Guo, H.-Q. Estimation of
Sugarcane Yield Using a Machine Learning Approach Based on UAV-LiDAR Data. Remote Sens. 2020, 12, 2823. [CrossRef]

43. Canata, T.; Wei, M.; Maldaner, L.; Molin, J. Sugarcane Yield Mapping Using High-Resolution Imagery Data and Machine Learning
Technique. Remote Sens. 2021, 13, 232. [CrossRef]

44. Lee, H.; Wang, J.; Leblon, B. Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial
Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn. Remote Sens. 2020, 12, 2071. [CrossRef]

45. QGIS.org. QGIS Geographic Information System. QGIS Association. 2021. Available online: http://www.qgis.org (accessed on
21 January 2022).

46. Imran, A.B.; Khan, K.; Ali, N.; Ahmad, N.; Ali, A.; Shah, K. Narrow band based and broadband derived vegetation indices using
Sentinel-2 Imagery to estimate vegetation biomass. Glob. J. Environ. Sci. Manag. 2020, 6, 97–108. [CrossRef]

47. Marcial-Pablo, M.D.J.; Gonzalez-Sanchez, A.; Jimenez-Jimenez, S.I.; Ontiveros-Capurata, R.E.; Ojeda-Bustamante, W. Estimation
of vegetation fraction using RGB and multispectral images from UAV. Int. J. Remote Sens. 2018, 40, 420–438. [CrossRef]

48. Avola, G.; Di Gennaro, S.F.; Cantini, C.; Riggi, E.; Muratore, F.; Tornambè, C.; Matese, A. Remotely Sensed Vegetation Indices to
Discriminate Field-Grown Olive Cultivars. Remote Sens. 2019, 11, 1242. [CrossRef]

49. Boiarskii, B. Comparison of NDVI and NDRE Indices to Detect Differences in Vegetation and Chlorophyll Content. J. Mech.
Contin. Math. Sci. 2019, 4, 20–29. [CrossRef]

50. Eitel, J.U.H.; Vierling, L.A.; Litvak, M.E.; Long, D.S.; Schulthess, U.; Ager, A.A.; Krofcheck, D.J.; Stoscheck, L. Broadband, red-edge
information from satellites improves early stress detection in a New Mexico conifer woodland. Remote Sens. Environ. 2011, 115,
3640–3646. [CrossRef]

51. Zhang, J.; Wang, C.; Yang, C.; Xie, T.; Jiang, Z.; Hu, T.; Luo, Z.; Zhou, G.; Xie, J. Assessing the Effect of Real Spatial Resolution of
In Situ UAV Multispectral Images on Seedling Rapeseed Growth Monitoring. Remote Sens. 2020, 12, 1207. [CrossRef]

52. Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. Early detection of pine wilt disease using deep learning algorithms and
UAV-based multispectral imagery. For. Ecol. Manag. 2021, 497, 119493. [CrossRef]

53. Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for
predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ.
2004, 90, 337–352. [CrossRef]

54. Kumar, V.; Sharma, A.; Bhardwaj, R.; Thukral, A.K. Comparison of different reflectance indices for vegetation analysis using
Landsat-TM data. Remote Sens. Appl. Soc. Environ. 2018, 12, 70–77. [CrossRef]

55. Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green
leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [CrossRef]

56. Wu, W. The Generalized Difference Vegetation Index (GDVI) for Dryland Characterization. Remote Sens. 2014, 6, 1211–1233.
[CrossRef]

57. Scher, C.L.; Karimi, N.; Glasenhardt, M.; Tuffin, A.; Cannon, C.H.; Scharenbroch, B.C.; Hipp, A.L. Application of remote sensing
technology to estimate productivity and assess phylogenetic heritability. Appl. Plant Sci. 2020, 8, e11401. [CrossRef]

58. Jannoura, R.; Brinkmann, K.; Uteau, D.; Bruns, C.; Joergensen, R.G. Monitoring of crop biomass using true colour aerial
photographs taken from a remote controlled hexacopter. Biosyst. Eng. 2015, 129, 341–351. [CrossRef]

http://doi.org/10.1029/2005GL022688
http://doi.org/10.3390/rs11070873
http://doi.org/10.1016/j.rse.2010.04.006
http://doi.org/10.1016/j.compag.2020.105880
http://doi.org/10.3390/rs12122028
http://doi.org/10.3390/rs13030457
http://doi.org/10.1016/j.geoderma.2019.05.031
http://doi.org/10.3390/rs13040581
http://doi.org/10.1186/s13007-019-0394-z
http://doi.org/10.1093/treephys/20.16.1113
http://www.ncbi.nlm.nih.gov/pubmed/11269963
http://doi.org/10.3390/rs12172823
http://doi.org/10.3390/rs13020232
http://doi.org/10.3390/rs12132071
http://www.qgis.org
http://doi.org/10.22034/gjesm.2020.01.08
http://doi.org/10.1080/01431161.2018.1528017
http://doi.org/10.3390/rs11101242
http://doi.org/10.26782/jmcms.spl.4/2019.11.00003
http://doi.org/10.1016/j.rse.2011.09.002
http://doi.org/10.3390/rs12071207
http://doi.org/10.1016/j.foreco.2021.119493
http://doi.org/10.1016/j.rse.2003.12.013
http://doi.org/10.1016/j.rsase.2018.10.013
http://doi.org/10.1029/2002GL016450
http://doi.org/10.3390/rs6021211
http://doi.org/10.1002/aps3.11401
http://doi.org/10.1016/j.biosystemseng.2014.11.007


Remote Sens. 2022, 14, 1140 22 of 22

59. Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017,
1353691. [CrossRef]

60. Susantoro, T.M.; Wikantika, K.; Saepuloh, A.; Harsolumakso, A.H. Selection of vegetation indices for mapping the sugarcane
condition around the oil and gas field of North West Java Basin, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 149, 012001.
[CrossRef]

61. Capolupo, A.; Monterisi, C.; Tarantino, E. Landsat Images Classification Algorithm (LICA) to Automatically Extract Land Cover
Information in Google Earth Engine Environment. Remote Sens. 2020, 12, 1201. [CrossRef]

62. Kerkech, M.; Hafiane, A.; Canals, R. Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases
detection in UAV images. Comput. Electron. Agric. 2018, 155, 237–243. [CrossRef]

63. Tesfaye, A.A.; Awoke, B.G. Evaluation of the saturation property of vegetation indices derived from sentinel-2 in mixed crop-forest
ecosystem. Spat. Inf. Res. 2021, 29, 109–121. [CrossRef]

64. Melillos, G.; Hadjimitsis, D.G. Using simple ratio (SR) vegetation index to detect deep man-made infrastructures in Cyprus. In
Proceedings of the Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXV, Online, 27 April–8 May 2020;
Volume 114180E. [CrossRef]

65. Salisu, A.; Abubakar, H.; Abubakar, H. One Way Anova: Concepts and Application in Agricultural System. In Proceedings of the
CEUR Workshop Proceedings, Kaunas, Lithuania, 27 April 2018.

66. Blachnik, M. Comparison of Various Feature Selection Methods in Application to Prototype Best Rules. Adv. Intell. Soft Comput.
2009, 57, 257–264. [CrossRef]

67. Ramos, A.P.M.; Osco, L.P.; Furuya, D.E.G.; Gonçalves, W.N.; Santana, D.C.; Teodoro, L.P.R.; Junior, C.A.D.S.; Capristo-Silva, G.F.;
Li, J.; Baio, F.H.R.; et al. A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices.
Comput. Electron. Agric. 2020, 178, 105791. [CrossRef]

68. Catalina, T.; Iordache, V.; Caracaleanu, B. Multiple regression model for fast prediction of the heating energy demand. Energy
Build. 2013, 57, 302–312. [CrossRef]

69. Perlich, C.; Provost, F.; Simonoff, J.S. Tree Induction vs. Logistic Regression: A Learning-Curve Analysis. J. Mach. Learn. Res. 2003, 4.
70. Meek, C.; Thiesson, B.; Heckerman, D. The Learning-Curve Sampling Method Applied to Model-Based Clustering. J. Mach. Learn.

Res. 2002, 2, 397–418.
71. Jozdani, S.E.; Johnson, B.A.; Chen, D. Comparing Deep Neural Networks, Ensemble Classifiers, and Support Vector Machine

Algorithms for Object-Based Urban Land Use/Land Cover Classification. Remote Sens. 2019, 11, 1713. [CrossRef]
72. Wei, L.; Wang, Z.; Huang, C.; Zhang, Y.; Wang, Z.; Xia, H.; Cao, L. Transparency Estimation of Narrow Rivers by UAV-Borne

Hyperspectral Remote Sensing Imagery. IEEE Access 2020, 8, 168137–168153. [CrossRef]
73. Yang, X.; Yang, R.; Ye, Y.; Yuan, Z.; Wang, D.; Hua, K. Winter wheat SPAD estimation from UAV hyperspectral data using

cluster-regression methods. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102618. [CrossRef]
74. Yoosefzadeh-Najafabadi, M.; Earl, H.J.; Tulpan, D.; Sulik, J.; Eskandari, M. Application of Machine Learning Algo-rithms in Plant

Breeding: Predicting Yield from Hyperspectral Reflectance in Soybean. Front. Plant Sci. 2021, 11, 2169. [CrossRef]
75. Dong, T.; Shang, J.; Chen, J.M.; Liu, J.; Qian, B.; Ma, B.; Morrison, M.J.; Zhang, C.; Liu, Y.; Shi, Y.; et al. Assessment of Portable

Chlorophyll Meters for Measuring Crop Leaf Chlorophyll Concentration. Remote Sens. 2019, 11, 2706. [CrossRef]
76. Liu, Y.; Liu, S.; Li, J.; Guo, X.; Wang, S.; Lu, J. Estimating biomass of winter oilseed rape using vegetation indices and texture

metrics derived from UAV multispectral images. Comput. Electron. Agric. 2019, 166, 105026. [CrossRef]

http://doi.org/10.1155/2017/1353691
http://doi.org/10.1088/1755-1315/149/1/012001
http://doi.org/10.3390/rs12071201
http://doi.org/10.1016/j.compag.2018.10.006
http://doi.org/10.1007/s41324-020-00339-5
http://doi.org/10.1117/12.2557893
http://doi.org/10.1007/978-3-540-93905-4_31
http://doi.org/10.1016/j.compag.2020.105791
http://doi.org/10.1016/j.enbuild.2012.11.010
http://doi.org/10.3390/rs11141713
http://doi.org/10.1109/ACCESS.2020.3023690
http://doi.org/10.1016/j.jag.2021.102618
http://doi.org/10.3389/fpls.2020.624273
http://doi.org/10.3390/rs11222706
http://doi.org/10.1016/j.compag.2019.105026

	Introduction 
	Application of Remote Sensing on Sugarcane Crops 
	Machine Learning for Crop Health and Chlorophyll Content 

	Methodology 
	Study Site 
	Experimental Design 
	Ground Truth Data Collection 
	Acquisition and Preprocessing of UAV Multispectral Images 
	Estimation of Vegetation Indices 
	Machine Learning Modelling and Statistical Analysis 

	Results 
	One Way ANOVA Statistical Analysis for Different Treatments and Chlorophyll Content 
	Correlation between Vegetation Indices and Sugarcane Chlorophyll Content 
	Prediction of Sugarcane Chlorophyll Content by Using Machine Learning Algorithms 

	Discussion 
	Basic Statistical Analysis 
	Machine Learning Approach Using Multispectral Bands and VLs 
	Limitations of the Experimental and Modelling Approach 

	Conclusions 
	Appendix A
	References

