Abstract ID: P03

DEVELOPMENT OF Fe@MgO NANOPARTICLES FOR ENHANCING THE ADSORPTION OF METHYLENE BLUE DYE

V. Gurunanthanan^{a,b*}, H.C.S. Perera^{a,b}, B.S. Dassanayake^{a,b}, S.S. Gunathilake^{b,c}

^aDepartment of Physics, University of Peradeniya, Peradeniya, SriLanka. ^bPostgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka. ^cDepartment of Chemistry, University of Peradeniya, Peradeniya, Sri Lanka.

*guru201666@gmail.com

Abstract

Industrial dye effluents are a significant concern and require to be treated before being discharged into the environment. Magnesium oxide (MgO) has been known as an excellent adsorbent for a variety of environmentally polluted compounds. This study synthesizes Fe@MgO nanocomposites via facile precipitationcalcination approach by using tetraethyl orthosilicate (TEOS) as a protective and coupling agent to remove the methylene blue in the wastewater. Powder X-ray diffraction analyses (XRD) were performed to characterize the physical properties of synthesized Fe@MgO nanocomposites and scanning electron microscopy (SEM) was used to observe their morphology and particle size, and the X-ray photoelectron spectroscopy (XPS) method was used to obtain the elemental composition as well as the chemical and electronic state of the atoms within a material. The adsorption performance was studied by batch experiments using a UV- vis spectrometer for methylene blue dye (MBD) removal. The results showed that as-prepared Fe@MgO nanocomposites are composed of cubic structures of Fe, Fe₃O₄, and MgO with granular morphology. Fe₃O₄ shows magnetic properties while, Mg, Fe, and O are in the electronic configuration of 1s, 2p, and 1s with 1302.2 eV, 710 eV, and 530 eV respectively. The contact time of the as-prepared Fe@MgO for methylene blue dye was 120 min. Langmuir model fitted better with the experimental data of methylene blue adsorption with higher correlation coefficients (R²>0.9911), suggesting the methylene blue adsorption onto Fe@MgO is monolayer chemisorption. Furthermore, the maximum adsorption capacity (q_m) calculated by the Langmuir model was 1857.0 mg g⁻¹ which was close to the experimental value of 1440.0 mg g⁻¹. It was found that the adsorption process was very fast, and the adsorption capacity of Fe@MgO was higher compared to Fe₃O₄/carboxymethyl-β-cyclodextrin (CM-β-CD), MgFe₂O₃@SiO₂, and Cobalt zinc ferrite.

Keywords: *adsorption, magnetic MgO, methylene blue dye, precipitation- calcination*