Abstract ID: P06

IMPROVING THE PERFORMANCE OF Sb₂S₃ SOLAR CELLS BASED ON THE EFFECT OF CONCENTRATIONS OF SB₂S₃ PRECURSOR

M.A. Farhana^{a,b,c}, J. Bandara^{a*}

^aNational Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka. ^bPostgraduate Institute of Science, Peradeniya, Sri Lanka. ^cDepartment of Physical Sciences, Faculty of Applied Sciences, South Eastern University of Sri Lanka, Sammanthurai, Sri Lanka.

* jayasundera.ba@nifs.ac.lk

Abstract

In solid-state solar cells, binary structure Sb₂S₃ semiconductor material is much more attractive as a light-harvesting active layer due to its desirable properties in solar cell applications. Since the precursor solution of the active layer is one of the key parameters that would control the material properties and hence device performance, in this study, we investigated the effect of the precursor concentration of the Sb₂S₃ solution. The Sb₂S₃ complex precursor solutions were prepared by adding 1mmol of Sb₂Cl₃ and 1.5 mmol of thiourea in different volumes (0.5, 1, 1.5 ml) of solvent (2-methoxyethanol), which give the concentrations of 2, 1, and 0.67 M of Sb₂S₃ complex precursor solution. The devices were fabricated in the configuration of FTO/TiO₂/Sb₂S₃/P3HT/Ag. The physical and electrical properties of the devices were examined based on the influence of the precursor concentration of Sb₂S₃ solution by measurements of current density-voltage (J-V), External Quantum Efficiency (EQE), UV-Vis absorption spectroscopy, and Scanning Electron Microscopy (SEM). The power conversion efficiencies (PCE) of 0.75, 3.23, and 2.11% were obtained for 2, 1, and 0.67 M, respectively. The best device performance was achieved with 1 M of Sb₂S₃ solution, which was 53% and higher than low concentrated (0.67 M) Sb₂S₃ solution and 3 times higher than the higher concentration (2 M) of Sb_2S_3 solution indicating the significant role of the precursor concentration.

Keywords: *active element, concentration, Sb*₂*S*₃