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Abstract: This study presents a hybrid optimization technique to optimize stator and rotor slots
of induction motor (IM) design for electric vehicle (EV) applications. The existing meta-heuristic
optimization techniques for the IM design, such as genetic algorithm (GA) and particle swarm
optimization (PSO), suffer premature convergence, exploration and exploitation imbalance, and
computational burden. Therefore, this study proposes a new hybrid optimization technique called
opposition-based jellyfish search optimization (OBJSO). This technique adopts opposition-based
learning (OBL) into a jellyfish search optimization (JSO). Apart from that, a multi-objective formula-
tion is derived to maximize the main performance indicators of EVs, including efficiency, breakdown
torque, and power factor. The proposed OBJSO is used to solve the optimal design of stator and
rotor slots based on the formulated multi-objective. The performance is compared with conventional
optimization techniques, such as GA, PSO, and JSO. OBJSO outperforms three other optimization
techniques in terms of average fitness by 2.2% (GA), 1.3% (PSO), and 0.17% (JSO). Furthermore,
the convergence rate of OBJSO is improved tremendously, where up to 13.6% reduction in average
can be achieved compared with JSO. In conclusion, the proposed technique can be used to help
engineers in the automotive industry design a high-performance IM for EVs as an alternative to the
existing motor.

Keywords: induction motor; jellyfish search optimization; multi-objective; optimal stator and rotor
slots design; opposition-based learning

1. Introduction

Electric vehicles (EVs) have grown in popularity in the past few years because of their
benefits, such as zero emissions, high efficiency, and low greenhouse gas emissions [1].
Internal combustion engines are replaced by an electric motor for the propulsion of EVs.
The electric motor, considered as the heart of EVs, determines their performance. Major
factors that hamper the penetration of EVs into the market are short mileage and high cost in
conjunction with the performance of the electric motor [2]. Several types of electric motors
are widely used for EVs, including DC-brushed motors, DC brushless motors, permanent
magnet synchronous motors (PMSMs), induction motors (IMs), and switch-reluctant motors
(SRMs) [3]. PMSMs and IMs have become preferable choices by manufacturers because
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of their favorable torque and power characteristics [2,4]. Although the efficiency of the
PMSMs is good enough to reach the required mileage, the overall cost of EVs is expensive
because of the high cost of permanent magnets to obtain the desired characteristics, which
leads to the reduction in the number of EV users [5]. IMs and SRMs can be alternative
solutions for the PMSMs because of less dependence on permanent magnets. Therefore,
they are the cheapest option for EVs. However, SRMs have some disadvantages, such as
low torque density, high torque ripples, and high noise [6]. Alternatively, the low-cost
advantage and other exceptional features of IM, such as adequate efficiency, favorable field
weakening characteristics, robustness, and control flexibility, make it a preferable option for
EV applications [7,8]. The application of IM for EVs needs to be appropriately designed to
give high performance in terms of starting torque, efficiency, breakdown torque, and power
factor [9]. However, this study does not consider the starting torque because it can be
controlled by adopting existing control schemes, such as vector control and direct torque
control [10].

The performance of IM is strongly related to the geometry parameters of stator and
rotor slots and other components. The effect of adjusting the core axial length toward
efficiency improvement of IM is carried out in [11]. In [12], optimal rotor slot design to
improve the torque characteristics of IM is investigated. A small-scale IM model for EVs is
studied using finite element analysis (FEA) to improve efficiency by minimizing losses and
temperature rise [13]. In [14], an optimal axial flux IM is designed for EVs by optimizing
several design parameters, including air-gap length, the number of turns per slot, rotor
slot width to slot pitch ratio, and stator slot width to slot pitch ratio. The axial flux IM is
also optimized using FEA in [15] by considering different driving cycles. Temperature rise
analysis on IM is carried out using FEA for EV application in [16,17]. Research work has
been performed to test the effect of coil pitch on the performance of IM for propulsion-
related applications [18]. A study on modeling and simulation of IM for starting conditions
is analyzed in [19]. The benefits of solid bar conductors over conventional stranded winding
for the IM in traction drive are investigated in [20]. A low starting current to increase the
torque, a wider stator, and rotor slots to reduce iron and skin effects and a higher number
of stator slots than the number of rotor slots to reduce the effect of harmonics are suggested
in [21] to make IM suitable for EVs. The effects of leakage and mutual inductance on the
constant power region and constant torque region in the torque speed characteristics of
EV are studied using FEA in [22]. The review indicates that the previous works separately
addressed three main performance indicators: efficiency, breakdown torque, and power
factor. Furthermore, only a few design parameters of stator and rotor slots are considered
because of the limitations of the FEA method. Therefore, a comprehensive number of
design parameters should be considered, and all the main performance indicators need to
be addressed simultaneously, which requires a good optimization technique to solve the
optimal stator and rotor slots design problem.

Among the different types of optimization techniques, meta-heuristic optimization
techniques provide a promising solution because of their ability to escape from local op-
timum traps [23]. Previous works have applied several meta-heuristic optimizations to
improve the performance of IMs for EVs. Optimal modeling of stator and rotor slots is
carried out using binary-coded GA in [9]. A IM model is optimized with PSO and GA
by considering efficiency and power factor as a multi-objective function, derived using
weight sum method in [24]. In [25], a multistage optimization technique is formulated
by amalgamating evolutionary search and pattern search algorithms to solve the IM op-
timization problem. An optimal design of advanced IM is proposed for EVs using GA
and FEA method in [26]. In [27], the efficiency and cost of IM are considered in the objec-
tive function, and the optimization problem is solved using GA. In [28], a Hooke Jeeves
optimization technique is suggested to solve the optimal IM modeling after comparing
it with GA. A new cost pattern value method is introduced in [29] for local search algo-
rithms to obtain an optimal FEA-based IM design by maximizing the breakdown torque.
However, the meta-heuristic techniques used in the previous works suffer from premature
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convergence, the imbalance between exploration and exploitation ability and computa-
tional burdens. A recent meta-heuristic technique, introduced in [30] as jellyfish search
optimization (JSO), is a good alternative to replace the existing optimization techniques.
Although JSO performs well in solving complex optimization problems, the optimization
technique is subjected to low exploration ability [31] that affects its convergence rate.

Opposition-based learning (OBL) is normally adopted in meta-heuristic optimiza-
tions, such as GA [32], differential evaluation algorithm [33], ant colony optimization [34],
gravitational search algorithm [35], firefly algorithm [36], and PSO [37], to enhance and
accelerate their performance. Furthermore, OBL is also applied with JSO but limited to
the initialization stage only [38]. No work has used OBL to update the population in each
iteration for JSO. Therefore, a new hybrid meta-heuristic optimization technique called
opposition-based jellyfish search optimization (OBJSO) is proposed in this study by adopt-
ing the OBL operator after the location updating procedure of JSO in each iteration to solve
the optimal stator and rotor slots design of IM. An analytical model of IM is used and
based on design constraints in [9] for preliminary study as the scope of work to evaluate
performance of the proposed optimization technique and for comparison purposes. A more
detailed explanation will be given in the following sections. Section 2 presents an analytical
modeling of IM for EV application. Section 3 presents the optimization formulation to
optimize the stator and rotor slots of the IM. Then, Section 4 showcases the performance of
OBJSO by comparing it with the existing meta-heuristic optimization techniques. Finally,
Section 5 draws the conclusion.

2. Induction Motor Modeling for Electric Vehicle

An analytical model of IM is used for investigation purposes in this work and the
model parameters were identified based on 5-hp, 80-Hz ratings. IMs are normally designed
to operate at 50-Hz or 60-Hz, but 80-Hz is used in this study to increase the motor’s base
speed and provide an adequate constant torque speed range. The main design specifications
of IM are given in Table 1, and the detailed procedure to design it is explained in [39].

Table 1. Main design specifications of IM [9].

Design Specification Parameter Settings

Power rating (hp) 5
Voltage (Vph) 110

Number of phases 3
Number of poles 4

Stator winding connection Delta
Rotor type Squirrel cage

Base frequency (Hz) 80
Rated current (A) 15.4

Synchronous speed (rpm) 2400

This work mainly focuses on the stator and rotor slots design. The rest of the parame-
ters are kept to constant values. The parameters are mostly the main design parameters
defined according to the main design specifications in Table 1, and their settings are tab-
ulated in Table 2. The number of stator slots is based on slot pitch at 7.85 mm and then,
the number of rotor slots can be determined accordingly as suggested in [21]. A smaller
number of rotor slots is used in this work and, therefore, more space of rotor tooth width
can be explored in designing the rotor slots.
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Table 2. Main dimensions of IM [9].

Dimension Parameters Settings

Core length (mm) 109
Stator outer diameter (mm) 170
Stator inner diameter (mm) 90

Airgap length (mm) 0.35
Rotor outer diameter (mm) 89.3
Rotor inner diameter (mm) 38

Number of stator slots 36
Number of rotor slots 30

2.1. Performance Evaluation

The three main performance indicators of EV motors are efficiency, breakdown torque,
and power factor. In EVs, power is supplied from the battery to IM in which the battery
capacity determines the driving range. Poor power factor leads to an oversizing of some
supply system components which requires more space inside the EVs [40]. The motor’s
efficiency needs to increase to reduce the losses through which the driving range can be
improved. An adequate breakdown torque is important to have a wider constant power
region. A steady-state equivalent circuit model of an induction motor, as shown in Figure 1,
is used to derive the performance indicators [41]. In the figure, I1, I2, and Im represent the
stator, rotor, and magnetization currents, respectively, and R1 and X1 denote the stator
resistance and stator leakage reactance, respectively. R2 and X2 indicate the rotor resistance
and rotor leakage reactance, respectively, and Xm refers to the magnetization reactance.

Figure 1. IM steady-state equivalent circuit.

The efficiency, η of IM is calculated from output power, Pout and total losses, Ploss as
follows [42]:

η =
Pout

Pout + Ploss
(1)

where Ploss can be determined as the following [43]:

Ploss = Psc + Prc + Pmv + Piron + Pstray (2)

The stator and rotor copper losses (Psc and Prc, respectively) can be calculated as [43]:

Psc = 3(I1)
2R1 (3)

Prc = 3(I2)
2R2 (4)

In this work, 4 poles IM is considered where the mechanical and ventilation losses,
Pmv are 1.2% from Pout [39]. The iron losses, Piron, can be determined from stator tooth iron
losses, Pst, stator yoke iron losses, Psy, and tooth flux pulsation core losses, Ptp, using the
following expressions [43]:

Piron = Pst + Psy + Ptp (5)

Pst = KT P′ Bb
TSWT

(
fm

50

)1.3
(6)
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Psy = KYP′ Bb
CWY

(
fm

50

)1.3
(7)

where P′ is between 2 and 3 W/kg [39]. BTS is the stator tooth flux density, BC is the
stator yoke flux density, WT is the weight of the stator tooth, WY is the weight of the stator
yoke, KT is a coefficient governs core loss augmentation, KY is a coefficient governs the
mechanical machining of stator yoke, fm is a frequency of motor, and b is the Steinmetz
coefficient which can be obtained from [39]. Ptp can be neglected because it is relatively
very small as compared to Pst and Psy. The stray losses, Pstray are related to the core losses
associated with rotor surface and space harmonic cage losses. In most of the applications,
Pstray is considered at 1% from Pout [43]. Pstray and Pmv in [44] are neglected but they are
considered in this work to give more accurate efficiency calculation and consistent with [9].

The breakdown torque, τbk can be calculated as [45]:

τbk =
3pV2

ph

2ω[R1 +
√

R2
1 + (X1 + 1.15X2)2]

(8)

where p represents the number of poles and ω is the angular frequency.
Finally, the power factor of the motor can be computed using the following expression:

cos φ =
Pout

3Vph I1η
(9)

2.2. Stator Slot Design Parameters

Stator slot geometries become the most relevant part of the IM performance enhance-
ment because of the influence of stator resistance and leakage reactance on the three
performance indicators [46]. The stator slot design in this work is based on stator shape,
as illustrated in Figure 2. There are six parameters related to the stator slot, namely, stator
slot opening width (Bs1), upper width (Bs2), lower width (Bs3), opening height (Hs1), wedge
height (Hs2), and height (Hs3), as shown in the figure. Only Bs1, Bs2, and Hs3 are selected
because they highly impact the magnetization characteristics and affect the stator resistance
and reactance. The derivation of stator resistance and leakage reactance from the stator slot
parameters is explained in [43]. The parameters are varied within certain limits to avoid
the violation of mechanical motor dimensions and ensure the stator tooth flux density is
within the allowed range. The parameter settings of stator slots are given in Table 3.

Figure 2. Stator slot shape of induction motor and its parameters.
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Table 3. Parameter settings of stator slot [9].

Stator Slot Parameters Settings (mm) Type

Bs1 0.5–2 Variable
Bs2 2–5.2 Variable
Bs3 5.1 Fixed
Hs1 0.5 Fixed
Hs2 1.0 Fixed
Hs3 20–30 Variable

The stator resistance, R1, and the stator leakage reactance, X1, can be determined using
the following expressions [39,43]:

R1 =
LCWρ80◦

co
Acoa1

(10)

X1 =
4µoωLW2λs

pq
(11)

λs ≈
[

2Hs3

3(Bs2 + Bs3)
+

2Hs2

(Bs1 + Bs2)
+

Hs1

Bs1

][
1 + 3KB

4

]
(12)

where LC is the total length of a turn in the stator, W is the number of turns per phase, Aco
is the area of the stator conductor, ρ80◦

co is the resistivity of the conductor at 80 ◦C, a1 is the
number of parallel paths, L refers to the stack length, µo is the permeability, q represents
the number of stator slot per phase, and KB is the chording factor.

2.3. Rotor Slot Design Parameters

The rotor resistance, R2, and rotor reactance, X2, are derived from the rotor slot
geometries that also influence the three performance indicators. Rotor resistance determines
the copper losses related to IM rotor, reducing its efficiency. Furthermore, breakdown
torque depends on rotor-leakage reactance, as given in (8). In addition, rotor reactance
also has minor impact on reactive power consumption under typical operating conditions
which affect the power factor. The rotor slot design parameters are illustrated in Figure 3.
The six-rotor slot parametric geometries are rotor slot opening width (Br1), upper width
(Br2), lower width (Br3), opening height (Hr1), wedge height (Hr2), and height (Hr3). In this
work, only Br1, Br2, and Hr3 are optimized within the specified limits as in Table 4 to ensure
they are not violating the overall design of IM. Similar to the stator slot, the three rotor slot
parameters are selected because they highly impact the rotor magnetization characteristics
and significantly affect the resistance and reactance of the rotor.

Figure 3. Rotor slot shape of induction motor and its parameters.
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Table 4. Parameter settings of rotor slot [9].

Rotor Slot Parameters Settings (mm) Type

Br1 0.2–1 Variable
Br2 3–6 Variable
Br3 2.75 Fixed
Hr1 0.5 Fixed
Hr2 0.5 Fixed
Hr3 3–15 Variable

Rotor resistance and reactance can be computed using the following expressions [39,43]:

R2 =
4NphWKWρ80◦

co LKR

Nr Abr
(13)

X2 =
4(WKW)2ωµoLKXλr

Nr
(14)

λr ≈
2Hr3

3(Br2 + Br3)

[
Hr1

Br1
+

3Hr2

2Br1

]
(15)

where Nph is the number of phases, KW is the winding factor, KR is the skin effect coefficient
of resistance, Nr is the number of rotor slots, Abr is the area of the rotor slot, and KX is the
skin effect coefficient of reactance.

This section’s modeling of IM for EV application can be used to obtain an optimal
stator and rotor slots design. Therefore, an optimization formulation is required to solve
the design problem, which will be discussed in the next section.

3. Optimization Problem Formulation

The IM is modeled by considering the stator and rotor slots design parameters as
presented in Section 2. The stator and rotor slots design of IM can be optimized to give
the best performance while ensuring IM to operate within the acceptable limits for EVs.
As discussed earlier, six parametric geometries of stator and rotor slots (Bs1, Bs2, Hs3, Br1,
Br2, and Hr3) are selected as control variables to give the best performance, which can
be performed by maximizing the performance indicators (efficiency, breakdown torque,
and power factor) while keeping the control variables (the selected design parameters)
within the permissible limits, as given in Tables 3 and 4. A multi-objective function can be
derived from the three performance indicators using the weighted sum method as follows:

f = max(w1η + w2τbk,pu + w3 cos ϕ) (16)

where τbk,pu represents the per unit breakdown torque and w1, w2, and w3 are weights
assigned to each objective function. In this case, an equal weight is used for w1, w2, and w3.
In the objective function, a per unit value of the breakdown torque is used, instead of the
actual value, to give a balanced treatment between the three performance indicators during
the optimization process.

The next following subsections will discuss the proposed OBJSO to solve the opti-
mal stator and rotor slots design problem using the formulated multi-objective function,
as expressed in (16). Given that the proposed optimization technique combines JSO and
OBL, their original formulations are presented to understand better and highlight the
modifications to develop OBJSO.

3.1. Jellyfish Search Optimization

JSO algorithm is a recently introduced swarm intelligent-based meta-heuristic opti-
mization that mimics jellyfish behavior in the ocean [30]. The algorithm works based on
the following three main principles:
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• Jellyfishes follow the ocean current;
• Jellyfishes swim inside the swarm;
• Time control mechanism.

3.1.1. Jellyfishes Follow the Ocean Current

The jellyfishes follow the ocean current because of a large amount of nutrients [47].
The direction of the ocean current can be determined by calculating the average distance
between all jellyfishes and the best jellyfish, as expressed in the following expression [30]:

−−−−−−−−−→
OceanCurrent =

∑
Npop
i=1 (M∗ − Ec Mi)

Npop
= M∗ − Ec

∑
Npop
i=1 Mi

Npop
= M∗ − Ecµ (17)

where M∗ is the current best location of jellyfish, Ec is a factor that governs the attraction,
and µ represents the mean location of all jellyfish. In a normal spatial distribution, jellyfishes
are scattered from the mean location given by a distribution coefficient, β. Therefore, Ec
can be determined by multiplying β and a uniform random variable r1 in a range between
0 and 1. The direction of the ocean current can be re-written as follows [30]:

−−−−−−−−−→
OceanCurrent = M∗ − βr1µ (18)

Then, a new bit k of the i-th jellyfish location can be updated as follows [30]:

Mi
k(t + 1) = Mi

k(t) + r2
−−−−−−−−−→
OceanCurrent (19)

where r2 is another random variable in range [0,1].

3.1.2. Jellyfishes Swim Inside the Swarm

Jellyfishes exhibit two types of motion when they swim inside the swarm: passive
motion (type A) and active motion (type B). The jellyfishes in the swarm exhibit type A
motion at the beginning of the swarm formation and exhibit type B motion over time. In the
type A motion, the new bit k of i-th jellyfish location is now updated using the following
expression [30]:

Mi
k(t + 1) = Mi

k(t) + rγ(Ub,k − Lb,k) (20)

where r is a random variable in range [0,1] and γ is a motion coefficient. Ub,k and Lb,k are
the k-th bit of upper and lower bounds, respectively.

On the other hand, the new bit k of the i-th jellyfish location in type B motion is
updated using the following expression [30]:

Mi
k(t + 1) = Mi

k(t) + r
−−−−→
Motion (21)

where
−−−−→
Motion is the direction of motion of jellyfish that exhibits type B motion. In this

motion, another j-th jellyfish is required for comparison purposes to evaluate the current
i-th jellyfish’s performance. The j-th jellyfish is selected at random. Then,

−−−−→
Motion can be

determined using the following condition [30]:

−−−−→
Motion =

{
Mj(t)−Mi(t), if f (Mi) ≥ f (Mj)

Mi(t)−Mj(t), if f (Mi) < f (Mj)
(22)

A time control function is used to control the selection between passive and active mo-
tions. It is also used to select between swim inside the swarm and follow the ocean current.

3.1.3. Time Control Mechanism

A time control mechanism is used in JSO to regulate different movements. In the first
stage, it is used to decide either the jellyfish will follow the ocean current or swim inside
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the swarm. The time control function, Tc varies randomly in an initial range of [0,1], but it
reduces monotonously along the iteration as expressed by the following [30]:

Tc(t) =
∣∣∣∣(1− t

T
)× (2r− 1)

∣∣∣∣ (23)

where t is the current iteration and T is total number of iterations. The value of Tc(t) is
compared to a constant, T0. The jellyfishes are decided to follow the ocean current if Tc(t)
is greater or equal to T0 or swim inside the swarm otherwise. In the second stage, when
jellyfishes are decided to swim inside the swarm, a function is derived from Tc as 1− Tc(t)
to select either type A or B motion. The value of 1− Tc(t) is compared with r (a random
variable in range [0,1]). Type A motion is selected if r is higher than 1− Tc(t); or otherwise,
type B motion is selected.

After all, the new location of jellyfish needs to be checked for any boundary violations.
If the boundary is violated, the jellyfish is brought back into the search space using the
following condition [30]:

Mi′ =

{
Mi

k −Ub,k + Lb,k, if Mi
k > Ub,k

Mi
k − Lb,k + Ub,k, if Mi

k < Lb,k
(24)

3.2. Opposition-Based Learning

The OBL technique was introduced by Tizhoosh in 2005 [32]. It is employed in
optimizations to allow simultaneous search in the opposite direction along with the current
search direction. If the current solutions are far from the globally optimal solution (i.e.,
on the opposite side), their opposite direction could lead to the solution. Thus, it improves
the exploration capability and helps to escape from the local optimum. The application of
OBL to generate an opposition location in search space is explained in the next paragraph.

Let M ∈ R be a real number within a set interval, where M ∈ [Lb, Ub]. The opposite of
M (M̄) can be determined as follows:

M̄ = Lb + Ub −M (25)

In the same way, the opposition of a high-dimensional variable can be obtained. Let
M(m1, m2, m3, . . . , md) be a location in a d dimensional space, where Mk ∈ [Lb,k, Ub,k] and
(m1, m2, m3, . . . , mp) ∈ R. The opposition of the location in the search space can be obtained
as follows [36]:

M̄k = Lb,k + Ub,k −Mk (26)

3.3. Opposition-Based Jellyfish Search Optimization

In this study, OBJSO is proposed to enhance the performance of JSO by adopting OBL.
An opposition population, M̄pop is generated from the obtained population using JSO,
Mpop, by applying (26) after a new location is updated in each iteration or initialization
in the first iteration. Then, the performance of Mpop and M̄pop is evaluated, and only the
first half of the best performance is selected to maintain the population size, Npop for the
optimization process. In this way, OBL explores any better solutions in opposite locations
of the suggested solutions by JSO to improve exploration capability. This process continues
until the stopping criteria is met. In this work, the optimization process is stopped when the
number of iterations reaches the maximum for overall performance evaluation purposes.

Apart from adopting OBL, the boundary correction mechanism in (24) is modified
because of a convergence issue. In the original mechanism, the violated jellyfish position is
relocated to the opposite site of search space according to the distance from the violated
boundary. This mechanism is almost similar to OBL, but it uses an outside position instead.
The mechanism is unsuitable for OBJSO because of the redundancy of the operation,
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ultimately jeopardizing the decision of JSO. Therefore, the violated jellyfish position in
OBJSO is relocated to the nearest boundary as follows:

Mi′ =

{
Ub,k, if Mi

k > Ub,k

Lb,k, if Mi
k < Lb,k

(27)

In the suggested boundary correction, the jellyfish position is limited to the search
space boundary in the same direction of the position updating procedure by JSO. The same
boundary correction is used in other optimization techniques, including JSO, to highlight
the effectiveness of the OBL application. In the OBL application, the original population is
kept and evaluated together with the opposition population to maintain the advantages
of JSO while getting the benefits of OBL. The proposed OBJSO is then applied to solve
the optimal design of stator and rotor slots for EV application. Figure 4 shows an overall
flowchart of the OBJSO application derived from the formulation discussed earlier. In the
next section, the performance of OBJSO is tested and compared with the conventional
meta-heuristic optimizations, such as GA, PSO, and JSO, in solving the optimal design of
stator and rotor slots problem.

Figure 4. Flowchart of OBJSO for optimal stator and rotor slots design.



Machines 2022, 10, 1217 11 of 18

4. Results and Discussion

An analytical model of IM based on the EV requirement is modeled and optimized
using OBJSO within a MATLAB software environment using a PC of 2.4 GHz and 8 GB
RAM. The performance of OBJSO is compared with other conventional meta-heuristic
optimizations, including GA [9], PSO [24], and JSO. The parameter settings for the op-
timization techniques are tabulated in Table 5. The performance of initial design of the
IM, as suggested in [9], is carried out to showcase the improvement that can be achieved
using the proposed technique. Table 6 shows the performance of IM based on the initial
parameter settings of 1.3 mm, 5.1 mm, 22.9 mm, 0.91 mm, 3.75 mm, and 9.29 mm for Bs1,
Bs2, Hs3, Br1, Br2, and Hr3, respectively. The performance of developed analytical model is
very much similar to the reported performance in [9].

Table 5. Optimization parameter settings.

Parameters GA PSO JSO OBJSO

Selection Roulatte wheel - - -
Mutation rate 20% - - -
Crossover rate 90% - - -

Control - Monotonously decrease Monotonously decrease
mechanism weight factor selection probability

C1, C2 - 1.8 - -
T0 - - 0.5
β - - 3
γ - - 0.1

Table 6. Performance of IM based on the initial design settings.

Performance Indicators Value

Efficiency, η 89%
Breakdown torque, τbk 43.22 Nm

Power factor, cos φ 0.828

4.1. Optimization Performance Comparison

Figure 5 shows a performance comparison of the four optimization techniques in
solving the optimal design of stator and rotor slots after 30 runs. The box plot with a
narrow band at the higher position indicates more precise and accurate solutions. In this
case, OBJSO provides the most precise and accurate solution because its box plot band is
narrow and the inter-quartile range, average, median, and worst values are superior to
others. The performance of JSO is not far behind OBJSO, which gives accurate solutions but
is less precise as its box plot is wider than OBJSO. Significant gaps are found in inter-quartile
ranges between JSO and the other two conventional optimization techniques indicating
that JSO is more suitable to solve the optimal stator and rotor slots design problem than
PSO and GA. Although PSO gives a narrower band than GA, the upper quartile of GA is
higher than PSO, which means GA has a better capability to provide more accurate solution
than PSO, but it is not consistent. All box plots in the figure show the same best fitness,
but their average fitness values are different at 1.3606, 1.3734, 1.3887, and 1.3911 for GA,
PSO, JSO, and OBJSO, respectively, which clearly shows that OBJSO outperforms GA, PSO,
and JSO in terms of average fitness value by 2.2%, 1.3%, and 0.17%, respectively. Therefore,
OBJSO is much better than GA, as suggested in [9], to solve the optimal stator and rotor
slots design problem.
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Figure 5. A performance comparison in terms of fitness.

A performance comparison between the optimization techniques in terms of conver-
gence is given in Table 7. According to the results, OBJSO obtains an optimal solution at the
fastest convergence rate, where the number of iterations to obtain the optimal solution is
the lowest among the optimization techniques in terms of best, average, and worst perfor-
mance. Furthermore, the good performance of OBJSO is the most consistent as it gives the
lowest standard deviation, σ. JSO follows the good convergence performance, and it is the
best among the conventional techniques in all aspects. Among the optimization techniques,
GA, which is used in [9], is the worst in terms of convergence. Figure 6 illustrates the con-
vergence characteristics of the optimization techniques in obtaining the best fitness solution.
It shows that OBL application gives better convergence or improves the exploration of JSO.
Overall, the average convergence rate of OBJSO is better than GA, PSO, and JSO by 30.6%,
26%, and 13.6%, respectively. Although OBJSO is the best convergence, it is subjected to a
computational burden, as shown by the time taken per iteration, Titer, which is mainly due
to the adoption of OBL, where additional 1.1 ms per iteration is required after comparing
with JSO to compute the OBL. However, the computational time of OBJSO is still better
than GA or more specific at 3.67 ms per iteration faster than GA. Ultimately, given the
time taken to obtain the best fitness, Tbest for OBJSO is almost like JSO because it converges
faster than JSO. Therefore, OBJSO is a good technique to solve the optimal stator and rotor
slots design of IM for EV applications.

Table 7. A performance comparison in terms of convergence.

Parameters GA PSO JSO OBJSO

Best 38 37 10 8
Average 41.40 39.97 36 31.70

Worst 45 42 32 30
σ 8.65 8.45 8.31 8.08

T∗iter (ms) 6.37 2.40 1.60 2.70
T∗best (s) 0.24 0.09 0.02 0.02

* Time taken based on the best convergence to obtain the best fitness.
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Figure 6. Convergence curves for best fitness value.

4.2. Induction Motor at Optimal Setting

The stator and rotor slots are optimized using OBJSO to maximize the three per-
formance indicators; efficiency, breakdown torque, and power factor, subjected to the
parameter settings in Tables 3 and 4. The obtained optimal design of stator and rotor
slots is given in Table 8. All the selected parameters are adjusted to new settings to give
better performance. Among the selected parameters, Hr3 or rotor slot height is required the
highest adjustment, where 6.29 mm is reduced from the initial setting, and it is followed
by Hs3 or stator slot height at 2.9 mm reduction, indicating the initial design is not good
when considering other performance indicators, such as breakdown torque and power
factor. Br1 or rotor slot opening width only requires the lowest adjustment for the optimum
performance. Overall, the results show that bigger dimensions are required for Bs1, Bs2, Br1,
and Br2, and smaller dimensions for Hs3 and Hr3 to give better performance.

Table 8. Optimal setting of stator and rotor slots.

Parameters Value (mm) Adjustment (mm)

Bs1 2 +0.7
Bs2 5.2 +0.1
Hs3 20 −2.9
Br1 1 +0.09
Br2 6 +2.25
Hr3 3 −6.29

Table 9 shows the IM performance based on the optimal stator and rotor slots design
parameters. The results are compared with the IM performance at the initial setting to
showcase the improvement achieved when the parameters are optimized. The results show
that both cases’ efficiency remains the same at 89%. The optimized stator and rotor slots
design shows a significant improvement in terms of breakdown torque with an increment
of 7.21 Nm or 14.3% improvement. The power factor is slightly increased by 0.005 or 0.6%
improvement compared with the initial setting. The optimized motor is further validated
by using a finite element method and discussed in the following subsection.

Table 9. Performance of IM after optimization.

Performance Indicators Value Increment

Efficiency, η 89% -
Breakdown torque, τbk 50.43 Nm 7.21 Nm (14.3%)

Power factor, cos φ 0.833 0.005 (0.6%)
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4.3. Model Validation Using Finite Element Method

Ansys Maxwell 2D software is used to carry out a finite element analysis for IM model
validation in this work. Figure 7 shows the magnetic flux density distribution in IMs
from the finite element analysis at initial and optimal settings. The results show that high
flux density can be observed near to the stator and rotor slot wedges where the readings
are between 1.82 and 1.95 T for initial setting and 1.88 and 2.01 T for optimal setting.
The magnetic flux density in the narrowest stator teeth at some places show almost the
same readings. However, the high values of flux density only occur at small parts of the IMs
and most of the readings are roughly between 1.04 and 1.34 T in both optimal and initial
settings. In a comparison between the optimal and initial settings, the optimized motor
gives higher flux density than the initial setting especially at narrow places. The higher
flux density is mainly due to a significant rotor slot width increment and rotor slot depth
reduction from the initial setting. Nevertheless, the magnetic flux density is still below than
the design constraints at 2.1 and 2.2 T for stator and rotor teeth, respectively [9]. This clearly
indicates that the optimal setting is a feasible IM design solution for EV applications.

(a) Initial setting (b) Optimal setting
Figure 7. Magnetic flux density distribution in the investigated IMs.

5. Conclusions

This work introduces a new optimization technique called OBJSO, which combines
JSO and OBL, to solve the optimal stator and rotor slots design of IM for EV applications.
Three performance indicators, namely, efficiency, breakdown torque, and power factor, are
formulated as a multi-objective function using the weighted sum method. The performance
of OBJSO is tested and compared with three existing meta-heuristic optimization techniques,
such as GA, PSO, and JSO. The results show that OBJSO outperforms GA, PSO, and JSO
in terms of average fitness by 2.2%, 1.3%, and 0.17%, respectively. On the other hand,
the convergence rate of OBJSO is improved tremendously, reaching up to a 13.6% reduction
on average compared with JSO. The optimized IM provides adequate efficiency in the
initial setting and improves the breakdown torque and power factor by 14.3% and 0.6%,
respectively. Therefore, the proposed optimal motor design technique can be useful for
automotive engineers to design a high performance of IM for EVs at a preliminary stage as
an alternative to the used expensive permanent magnet motors. However, the investigated
IM based on design parameters in [9] operates at high flux density and it becomes the main
limitation of this work. A more suitable IM design that operates at lower flux density or
applied field model can be considered in the future to address the limitation. Furthermore,
additional parameters and control schemes can be included to evaluate the potential
performance improvement for EV applications.
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Nomenclature

β Distribution coefficient
cos φ Power factor
η Efficiency
γ Motion coefficient
µ Mean location of jellyfishes
µo Permeability
ω Angular frequency
ρco Resistivity of the conductor
τbk Breakdown torque
a1 Number of parallel paths
Abr Area of the rotor slot
Aco Area of the stator conductor
b Steinmetz coefficient
BC Stator yoke flux density
Br1 Rotor slot opening width
Br2 Rotor slot upper width
Br3 Rotor slot lower width
Bs1 Stator slot opening width
Bs2 Stator slot upper width
Bs3 Stator slot lower width
BTS Stator tooth flux density
Ec Factor of attraction
fm Motor operating frequency
Hr1 Rotor slot opening height
Hr2 Rotor slot wedge height
Hr3 Rotor slot height
Hs1 Stator slot opening height
Hs2 Stator slot wedge height
Hs3 Stator slot height
I1 Stator current
I2 Rotor current
Im Magnetization current
KB Chording factor
KR Skin effect coefficient for resistance
KT Coefficient governs core loss augmentation
KW Winding factor
KX Skin effect coefficient for reactance
KY Coefficient governs mechanical machining of stator yoke
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L Stack length
Lb Lower boundary
Lc Total length of a stator turn
M Vector of a jellyfish location
Nr Number of rotor slots
Nph Number of phases
Npop Population size
p Number of poles
P′ Specific losses in W/kg
Piron Iron losses
Ploss Power losses
Pmv Mechanical and ventilation losses
Pout Power output
Prc Rotor copper losses
Psc Stator copper losses
Pstray Stray losses
Pst Stator tooth iron losses
Psy Stator yoke iron losses
Ptp Tooth pulsation core losses
q Number of stator slot per phase
r Random variable in range [0,1]
R1 Stator resistance
R2 Rotor resistance
s Slip of the motor
T Maximum number of iteration
t Iteration
Tc Time control function
Ub Upper boundary
Vph Input voltage
W Number of turns per phase
w1 Weight factor for efficiency
w2 Weight factor for breakdown torque
w3 Weight factor for power factor
WY Weight of stator yoke
WT Stator tooth weight
X1 Stator reactance
X2 Rotor reactance
Xm Magnetization reactance
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