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ABSTRACT Protein structure prediction (PSP) is a vital challenge in bioinformatics, structural biology
and drug discovery. Protein secondary structure (SS) prediction is critical since three-dimensional (3D)
structures are primarily made up of secondary structures.With the advancement of deep learning approaches,
SS classification accuracy has been significantly improved. Many existing methods use an ensemble of
complex neural networks to improve SS prediction. Because of the high dimensionality of the hyperparam-
eter space, deep neural networks with complex architectures are typically challenging to train effectively.
Also, predicting secondary structures in the boundary regions between different types of SS is challenging.
This study presents Multi-S3P, which employs bidirectional Long-Short-Term-Memory (BILSTM) and
Convolutional Neural Networks (CNN) with a self-attention mechanism to improve the secondary structure
prediction using an effective training strategy to capture the unique characteristics of each type of secondary
structure and combine them more effectively. The ensemble of CNN and BILSTM can learn both contextual
information and long-range interactions between the residues. In addition, using a self-attention mechanism
allows the model to focus on the most important features for improving performance. We used the SPOT-
1D dataset for the training and validation of our model using a set of four input features derived from
amino acid sequences. Further, the model was tested on four popular independent test datasets and compared
with various state-of-the-art predictors. The presented results show that Multi-S3P outperformed the other
methods in terms of Q3, Q8 accuracy and other performance metrics, achieving the highest Q3 accuracy of
87.57% and a Q8 accuracy of 77.56% on the TEST2016 test set. More importantly, Multi-S3P demonstrates
high performance in SS boundary regions. Our experiment also demonstrates that the combination of
different input features and a multi-network-based training strategy significantly improved the performance.

INDEX TERMS Deep learning, convolutional neural network, protein structure prediction, protein sec-
ondary structure, recurrent neural network.

I. INTRODUCTION
Proteins are crucial for living organisms because of their
diverse functions, such as functioning as a catalyst in
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cell metabolism, constructing antibodies and generating cell
architecture and live tissues. The functions of a protein are
determined by its native 3D structure, which has the lowest
free energy. Misfolded proteins have the potential to cause
acute illnesses in living organisms. If a drug molecule could
dock on a disease protein, its function may be inhibited.
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As a result, understanding protein structures is critical in
medicine, structural bioinformatics, drug design, and other
related domains [1], [2]. It typically takes a long time and
is expensive to determine protein structure experimentally
using techniques like X-ray crystallography, Cryo-EM, and
NMR. Numerous computational prediction techniques have
been developed to address these issues [3], [4]. By gain-
ing outstanding results during the 14th Critical Assess-
ment of Structure Prediction (CASP14) competition in 2020,
AlphaFold2 [5] showed the full potential of deep-learning
approaches for the prediction of protein structures from
amino acid sequences [6]. The pre-calculated AlphaFold
database [7] provides 3D models for over a million dis-
tinct proteins as of March 2022, significantly enhancing our
knowledge of protein structure and function.

Despite the fact that the novel deep learning techniques
have substantially increased the accuracy of protein structure
prediction [8], many difficulties still exist because of the com-
plexity of protein 3D structures. The massive computational
demands of running the AlphaFold model, both in terms
of processing power and runtime, are indeed challenging
requirements. As a result, it is still necessary for prediction
algorithms that can predict protein structure quickly and
accurately. Researchers generally divide this problem into a
number of manageable sub-problems, such as the secondary
structure prediction [9], [10], backbone angle prediction [11],
[12], [13], distance map prediction [14], [15], [16] and
contact map prediction [17], in order to make it easier to
understand.

When Pauling and Corey suggested sheet and helical
conformations (structures) of protein backbones based on
hydrogen bonding patterns in 1951 [18], it marked the
beginning of the secondary structure (SS) prediction. The
secondary structures of a protein refer to the local, repet-
itive arrangements of its amino acid residues into spe-
cific conformations, such as alpha-helices or beta-sheets.
These confirmations, in turn, determine the overall fold-
ing and stability of the protein, as well as its interactions
with other molecules. The local structure of the polypeptide
backbone is described at a coarser scale by the secondary
structures.

Secondary structure prediction, despite its long history,
remains an active area of research because 3D structures are
primarily made up of secondary structures. When proteins
fold, secondary structures are generated initially, followed
by the formation of 3D native conformations. The task of
predicting a protein’s 3D structure using only its primary
amino acid sequence is a challenging one. However, simpli-
fying the prediction process by utilizing the basic definitions
of secondary structures can significantly aid in achieving
this goal [19]. If the secondary structure of a protein can be
built correctly, it can be used to predict numerous structural
features necessary for 3D structure prediction. Secondary
structures can provide valuable insights into a protein’s activ-
ity, functions, and relationships [20].

Protein secondary structures can be classified into either
Q3 (3-state) or Q8 (8-state) [21]. The 3-state main types
of secondary structures are helix (H), strand (E), and coil
(C), with helix and strand structures being the most preva-
lent in nature, according to the various hydrogen bonding
modes [18]. A more detailed description of secondary struc-
tures was put forth later in 1983. The previous 3-states (Q3)
are expanded to 8-states (Q8) in the new classification deter-
mined by the DSSP algorithm [21].

The advancement of practical machine learning algorithms
and the discovery of novel features have played a significant
role in protein SS prediction over the last few decades [22],
[23], [24]. To identify SS in proteins, early efforts used sta-
tistical propensities of particular amino acids derived from
known structures [25]. The integration of sequence evo-
lutionary profile features derived from multiple sequence
alignment (MSA), such as position-specific scoring matrices
(PSSM) [26], [27], resulted in subsequent improvements.

In addition to the PSSM profile, the HiddenMarkov model
(HMM) feature obtained from HHblits [28] was employed
for predicting protein structure and properties [24]. Some
studies used Atchley’s factors to determine the similarity of
amino acid types [24]. Also, seven physicochemical proper-
ties (7PCP) [29] have been used in many secondary structure
prediction methods [9], [10], [30], [31], [32].

This paper presents Multi-S3P, which utilizes three differ-
ent deep-learning techniques and four input features (PSSM,
HMM, 7PCP and PSP19) in order to achieve a better clas-
sification accuracy of protein SS. Initially, our approach
involved constructing an ensemble network consisting of
Convolutional Neural Networks (CNNs) and Bidirectional
Long Short-Term Memory (BILSTM) networks. The uti-
lization of this hybrid architecture allowed for the learning
of short-range contextual information as well as long-range
interactions. To effectively train our models to classify dif-
ferent types of protein secondary structures, we employed
three specialized distinct combinations of CNN and BILSTM
networks with a self-attention mechanism to focus on the
most informative parts of the feature vectors and make a final
prediction for both Q3 and Q8 classification. Furthermore,
the proposed method used the same training and valida-
tion datasets as the state-of-the-art method SPOT-1D [32].
We conducted our experiments on four independent test sets
(TEST2016, TEST2018, CASP12 and CASP13) to evaluate
and facilitate a fair comparison of performance with other
methods.

The main contribution of this work includes a hybrid deep
learning architecture with specialized multi-network-based
training to effectively process both local and global interac-
tions between amino acids inmaking accurate Q3 andQ8 sec-
ondary structure predictions using a set of four input features.
The use of multi-network-based training techniques for dif-
ferent classes of SS has significantly contributed to improve-
ment in performance. It is evident from the results presented
in the work that the proposed Multi-S3P outperformed the
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other methods in terms of Q3 and Q8 accuracy and other
performance metrics, achieving the highest Q3 accuracy of
87.57% and a Q8 accuracy of 77.56% on TEST2016 test
set. These results demonstrate the effectiveness of the pro-
posedmethod and its potential to enhance secondary structure
prediction performance. Our experiment also demonstrates
that the combination of different input features significantly
impacts performance. Further, the significance of our model’s
performance lies in its ability to effectively predict SS in the
boundary regions, which is a critical and challenging task in
protein secondary structure prediction.

The paper is structured as follows: Section II presents the
related work in the protein secondary structure prediction
area. Section III provides an overview of the basic concepts
related to protein structure prediction and protein SS rep-
resentation. The proposed method, along with the data and
features used, is described in Section IV. Section V presents
our experimental results and associated discussions. Finally,
in Section VI, we summarise our work and provide conclud-
ing remarks.

II. RELATED WORKS
In recent years, we found significant progress in protein
secondary structure prediction through machine learning and
novel deep learning techniques. Many early methods for
predicting secondary structures used shallow neural net-
works [33], [34], Bayesian analysis [35], and information
theory [36]. To boost the prediction performance, many
researchers employed modified or ensemble neural network
architectures. DeepCNF [37] proposed a deep CNN model
combined with a Conditional Neural field (CNF). SPI-
DER3 [31] and NetSurfP-2.0 [38] employed bidirectional
recurrent neural networks (BIRNN) to capture long-range
amino acids interactions. MUFOLD-SS [19], [39] used deep
residual inception networks to learn the global and local
interactions between residues. DNSS2 [24] integrated six
one-dimensional deep neural networks, such as convolu-
tional, residual, recurrent, fractal memory and inception
networks, to predict the Q3 and Q8 secondary structure.
SPOT-1D [32] used an ensemble of neural network mod-
els consisting of 2D Bidirectional Residual LSTM Net-
works (2D-BRLSTM) and Residual Convolutional Neural
Networks (ResNet). The model SAINT [9] incorporated a
self-attention mechanism and Deep3I to enhance the Q8
prediction accuracy. OPUS-TASS [10] recently proposed
an architecture based on Transformer along with CNN and
LSTM to capture the interactions between the two residues
in order to enhance the SS prediction accuracy. A recent
method calledDLBLS_SS [40] utilized the BILSTMnetwork
and temporal convolutional networks to construct the model.
In addition, some deep learning-based methods employed
huge datasets like ProteinNet [41] to train the model in order
to improve the prediction accuracy [42]. However, thesemod-
els consume a large training time and huge computational
power.

Certain predictors, such as PiPred [43], specialized in pre-
dicting only the π -helices structures. Some recent predictors,
such as NetSurfP-3.0 [44] and SPOT-1D-LM [45] employed
the sequence embedding generated by pre-trained protein
language models like ESM-1b [46] and ProtTrans [47] to
improve the runtime of secondary structure prediction dra-
matically. However, the prediction performance of these
models in terms of accuracy was not improved significantly
compared to its predecessor. DML_SS [48] utilized a deep
centroid model for protein SS prediction using a lightweight
network with multi-branch topology based on deep metric
learning. Table 1 shows the summary of the different deep
learning architectures used in existing notable SS prediction
models.

Overall, the Q3 Protein SS prediction has reached 87-
89% accuracy, which is close to its theoretical limit [49],
[50]. However, taking current protein structure databases into
account, a new study claimed that the theoretical limit of Q3
SS prediction could be extended to 90-92%. The upper limit
of Q8 for eight-state measurements is 84-86% [50], [51]. This
indicates that there is still a gap in accuracy to be filled.

III. PRELIMINARIES
This section describes the basics of protein structure pre-
diction and protein secondary structure representation for
computational PSP.

A. PROTEIN STRUCTURE PREDICTION
Proteins are amino acid sequences. Regular proteins gener-
ally have 20 amino acid classes or types. The amino acid
types vary in size, structure, charge, shape, hydrogen-bonding
capacity, reactivity and hydrophobicity. However, not every
protein may include all the 20 types of amino acids. Further-
more, every amino acid can exist in a protein in any position,
subject to stoichiometric limitations [52]. Constraints in PSP
are also called restraints. Different single and 3-letter codes
identify amino acid types. As a result, a protein can be char-
acterized primarily by a sequence of those single and 3-letter
codes. Table 2 illustrates 1-letter amino acid codes, as well
as a protein’s amino acid sequence using 1-letter amino acid
codes.

Any two consecutive amino acids in the sequence form
a peptide bond in the given sequence of amino acids in
a protein. The consecutive peptide bonds between adjacent
amino acids result in the formation of a polypeptide chain.
This chain is also referred to as the backbone or main chain
of the protein. A polypeptide chain has distinct beginning and
ending terminals [53]. One belongs to the amino group, and
the other belongs to the carboxyl group, also known as the N-
terminal and theC-terminal, respectively. Nevertheless, once
a peptide bond is formed, the remaining portion of an amino
acid in the protein’s backbone is referred to as an amino acid
residue. The length of a protein, denoted by L, is determined
by the total number of residues present in the protein.
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TABLE 1. Deep learning architectures used in existing notable SS prediction models (CNN: convolutional neural networks; CNF: conditional neural fields;
FC: fully connected layers; IN: inception networks; BILSTM: bidirectional long short-term memory; ResNet: residual neural network; RCNN: recurrent
convolutional neural network; CRMN: convolutional residual memory networks; FT: fractal networks).

TABLE 2. 1-letter codes of 20 types of amino acid, as well as the amino acid sequence of protein 5AON using the amino acids 1-letter codes.

Certain bonds in the chemical structure of each amino
acid are rotatable in 3D space. The bond serves as the axis
of rotation for any rotatable bond; the atom at one end of
the bond serves as the basis of rotation, and all other atoms
within the same amino acid residue or whole atoms in the
other amino acid residues in the given protein are rotated.
A protein’s 3D structure or conformation is formed in this
way. It should be noted that the peptide bonds formed by
successive amino acids are not rotatable. In this regard, the
whole 3D structure of a protein is described as the tertiary
structure, whereas only the chain of amino acids is referred
to as the primary structure. Therefore, protein structure pre-
diction involves predicting the protein’s 3D structure from
its sequence of amino acids, i.e. predicting secondary and
tertiary structures from primary structure [5].

B. SECONDARY STRUCTURE REPRESENTATION
The local and repetitive patterns of amino acid residues in
a protein are referred to as its secondary structures, which
adopt specific conformations like α-helices, β-sheets and
coils (or loops). These local structures are known as the
3-state secondary structures. Considering variants of these
main classes, the 3-states (Q3) are expanded to 8-states (Q8)
in the new classification determined by the DSSP algorithm,
which includes α-helix (H), π -helix (I), 310 helix (G), β-turn
(T), β-strand (E), β-bridge (B), bend (S), and loop or others
(C), [21] amongwhich the α-helix and β-strand being the two
main structural features [54].

Predicting the Q3 or Q8 classes simply refers to the type
of secondary structure of a residue, not its position in relation
to other secondary structures. Due to the limited range of
phi and psi angles associated with rigid secondary struc-
tures such as helices and sheets, it is possible to produce
approximatemodels of such structures using this information.

FIGURE 1. Graphical representations of the secondary structures such as
helices, sheets, and coils.

Nevertheless, this does not truly aid in the construction of
coil-type secondary structures since any angle value is pos-
sible. As a graphical Ribbon diagram, Figure 1 shows the
various secondary structures, such as β-sheets, helices, and
coils.

IV. MATERIALS AND METHODS
The primary goal of this research is to enhance secondary
structure prediction by creating more sophisticated learn-
ing algorithms and using more informative input features.
We have designed and developed a methodological frame-
work to create an efficient deep learning architecture with a
novel training approach and to acquire features to enhance
secondary structure prediction performance during the pro-
cess.

A. DATASET
The proposed method uses the same training and validation
datasets as the state-of-the-art method SPOT-1D [32] (avail-
able at: http://sparks-lab.org/server/spot-1d/). The dataset
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was built from PISCES server (CullPDB) [55] curated on
February 2017 with the parameters including resolution bet-
ter than 2.5Å, sequence identity cutoff of 25%, and R-factor
<1 [26]. The proteins with over 700 residues and proteins
that contain incomplete main-chain atoms were removed to
avoid the low-quality structures and the sequence redundancy
bias [56]. Finally, we obtained 11,007 proteins, of which
10,024 were used for network training and 983 for model
validation.

We conducted our experiments on four independent test
sets. Same as SPOT-1D, we used TEST2016 [57] and
TEST2018 [32], which contain 1213 proteins and 250 pro-
teins, respectively. In addition, we used two CASP datasets
(CASP12 andCASP13) to facilitate a fair comparison to other
methods. The CASP12 dataset contains 55 proteins, and the
CASP13 dataset consists of 32 proteins [9], [24]. We cleaned
the data to remove duplication at a 25% sequence identity
cutoff to avoid evaluation bias associated with training data.
It is worth noting that all test data contain accurate labels for
both 3-state and 8-state secondary structures obtained from
the DSSP algorithm [21].

Using the given independent datasets, the performance
of the proposed method was tested and compared against
various state-of-the-art secondary structure prediction meth-
ods, including DeepCNF [37], SPIDER3 [31], RaptorX [11],
PSRSM [20], MUFOLD-SS [19], NetSurfP-2.0 [38],
Porter 5 [58], SPOT-1D [32], DNSS2 [24], DLBLS-SS [40]
and DML_SS [48]. All the approaches were evaluated in
terms of Q3, Q8 accuracy and SOV scores on each test
dataset.

B. INPUT FEATURES
Homologous proteins, which share a common ancestry and
possess comparable sequences of amino acids, generally
exhibit analogous secondary structures. This characteristic
allows for the classification of homologous proteins as mem-
bers of the same family by applying a relevant cutoff in
MSA analysis [59]. After that, the approximate family struc-
ture can be predicted. The MSA appears to provide signif-
icantly more information about the structure than a single
sequence [60]. Our input features consist of such evolutionary
profiles, which include 20 features obtained from the PSSM
profile [27], and 30 features obtained from the HMM profile.
In addition, we also employed 7PCP of each amino acid and
19 features (PSP19) from OPUS-DOSP [61].

Each PSSM profile was generated by three iterations of
PSI-BLAST [26] with default parameters based on UniRef90
database [62] updated in December 2019. We obtained a L×

20 dimension feature vector for each protein from this, where
L is the amino acid sequence length. The 20 dimensions
indicate the probabilities of residue substitution per sequence
residue. Each HMM profile was generated by HHBlits [63]
based on Uniclust30 database [64] with default parameters.
The HMM profile is an L × 30 dimension feature for each
protein, where L is the amino acid sequence length. The

7PCP includes hydrophobicity, Normalized Van der Waal’s
volume, polarity, polarisability and Normalized frequency of
alpha-helix and obtained from [29] and [65].

The PSP19 attribute was obtained from a study by [61],
which categorizes 20 amino acid residues into 19 solid-body
blocks based on their local structures. Thus, each residue
has a 19-dimensional binary vector; if a solid-body block is
present in the residue, the corresponding position in the vector
is set to 1. Otherwise, it is set to 0. In total, we combined
PSSM, HMM, 7PCP and PSP19 to form a final feature vector
of L × 76, where L is the length of the primary amino acid
sequence.

C. NEURAL NETWORK ARCHITECTURE
The main task of deep learning is to extract either local
or non-local interactions from input features using vari-
ous neural network architectures. According to literature,
the Convolutional Neural Network (CNN) effectively cap-
tures short-term interaction of features [19], [66]. At the
same time, the Recurrent Neural Network (RNN) or Long
Short-term Memory (LSTM) [67] can be used for capturing
long-range dependencies. To improve the accuracy of protein
secondary structure prediction, we developed a novel ensem-
ble approach that utilizes a combination of CNNs, Bidirec-
tional LSTM (BILSTM) networks, and a fully connected
(FC) layer component with a self-attention mechanism. This
hybrid architecture is designed to capture short-range contex-
tual information and long-range interactions effectively.

1) BASE MODEL
We proposed a base model using CNN, BILSTM and FC
components, which was then used in our Multi-S3P model
(we provide descriptions of this model in the subsequent
section). The framework of the proposed basemodel is shown
in Figure 2. The framework begins with Normalized input
feature sets with 0 mean and standard deviation of 1 in
the training data to ensure that the values are scaled to be
comparable and fall within a similar range. The Normalized
input data then send through two parallel network layers.
The first parallel network layer is a CNN component with
a sequence of five identical convolutional layers, each with
five types of kernels: (11,1), (21,1), (31,1), (41,1), and (51,1),
with 32 output channels for each kernel type. The ‘same’
padding is applied in each layer. The shapes of the kernels
are primarily established in the sequence direction to acquire
information from neighbouring residues, whereas the size
along the feature dimension is restricted to one due to GPU
memory constraints. The final output of each layer is gener-
ated by concatenating the results of each kernel, and Batch
Normalization layers are used between every two layers for
regularization. The Rectified Linear Unit (ReLU) [68] was
used as the activation function in each layer. Finally, the aver-
age pooling is utilized in the channel dimension to maintain
consistency between the input and output dimensions of the
CNN module.
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The second parallel network layer is a bidirectional LSTM
module with four BILSTM layers, each with 1024 units.
As the activation function, Relu was used. To avoid the
overfitting problem, a 25% dropout was imposed in each
layer [69]. The end of the network consists of a fully con-
nected (FC) layer and a softmax output layer with 11 nodes.
Finally, a Softmax activation function was used to convert the
output into probabilities. The 11 output nodes corresponded
to the Q3 and Q8 secondary structure classes of the protein.

2) MULTI-NETWORK MODEL (MULTI-S3P)
To facilitate the classification of different classes of protein
secondary structures (sheets, helices and coils), we trained
three similar networks of our base model consisting of
a combination of CNN and BILSTM architectures; each
specialized in recognizing either sheets, helices, or coils.
We employed this concept used in certain specialized predic-
tors, PiPred [43] that only predicts the π -helices structures
and SAP4SS [12], a secondary structure specific protein
backbone angles predictor. The architecture of the proposed
Multi-S3P is shown in Figure 3. Part (a) in the figure is
specialized in recognizing helices (H, I and G) SS structures,
which has the same architecture as our base model with five
identical convolutional layers and four BILSTM layers. Part
(b) in the figure is specific for coils types of structures (T,
S and C), which has two parallel layers of CNN and BIL-
STM. The CNN is a sequence of three identical convolutional
layers, each with three types of kernels: (11,1), (21,1), and
(31,1), with 32 output channels. The BILSTMmodule is with
two identical layers, each with 1024 units. Similarly, part
(c) in the figure is specialized in perceiving sheets types of SS
structure, which has two parallel modules with two identical
convolutional layers and two BILSTM layers.

As shown in the Figure 3 architecture, the three separate
networks (part a, part b and part c) each consist of a dense
layer, which produces the output for the specific secondary
structure class. The output layer uses a softmax activation
function, which produces a probability distribution over the
possible secondary structure classes (i.e., H for alpha-helices,
E for beta-sheets, and C for coils). Each network has its own
output layer with a unique name. The outputs of the three
separate networks are concatenated together using the Keras
concatenate layer.

The concatenated output from the three separate net-
work modules is passed through a self-attention layer. The
self-attention layer is a novel layer that has been shown to
be effective in a wide range of natural language processing
tasks [70]. It allows themodel to focus on different parts of the
input sequence and weigh the importance of each part based
on the context. The model then applies dropout and Normal-
ization layers to improve training stability. The self-attention
output is then passed through a separate dense output layer
with 11 units, of which three are for Q3 classification, and
eight are for Q8 classification. Finally, predicted Q3 and Q8
secondary structures are evaluated.

D. OUTPUTS
Using the proposed deep learning model, we used a multi-
network-based prediction technique for predicting Q3 (3-
state), Q8 (8-state) classifications using eleven prediction
nodes. We employed the definition of DSSP algorithm [21]
for assigning SS class labels to the protein sequence for both
the Q3 and Q8 secondary structure. The 8-state classification
includes 310 helix (G), π -helix (I), α-helix (H), β-bridge (B),
β-strand (E), high curvature loop (S), coil (C), and β-turn
(T) states. TheQ3 essentially divides eight classes into 3-state
labels, which are as follows: helix H (G, H, and I in the Q8
definition), strand E (B and E in the Q8 definition), and coil C
(C, S and T in the Q8 definition). When each conformation is
predicted separately, the accuracy of the predictions is higher
compared to when trying to infer the Q3 conformation from
the Q8 conformation [32], [71].

E. IMPLEMENTATION AND TRAINING
WeusedKeras, the Python deep learningAPI (http://keras.io),
along with Tensorflow (v2.8.0) as a back-end to implement
and train our model. The model was trained on a GPU
node with ‘‘Nvidia RTX A5000’’, having 24 GB of GPU
memory. The models in this study are configured to handle a
batch size of 4 proteins, with their weights initialized using
Glorot uniform initializer. The training process leverages the
Adam optimizer [72] to calculate and update the model’s
parameters with an initial learning rate of 0.001. To enhance
model performance, the learning rate is reduced by half
when there is a decrease in the validation set accuracy. This
process is repeated up to five times before terminating the
training process, typically completed in around 36 epochs.
On average, each training took 6 hours. The hyperparameters
of models were optimized only on the validation set.

F. PERFORMANCE EVALUATION
The accurate classification of protein secondary structure is
a challenging task that poses a multi-class problem. Our pri-
mary focus was on utilizing two widely recognized measures,
namely accuracy and SegmentOverlapmeasure (SOV), as the
key metrics for our model analysis. Accuracy serves as a
standard performance metric to evaluate the efficacy of sec-
ondary structure prediction models. The percentage accu-
racy measure is utilized for both Q3 and Q8 classifications
to quantify the degree of agreement between predicted and
observed secondary structure assignments. Let the Q8 sec-
ondary structures S8 = {G, I, H, S, T, C, B, E} and the Q3
secondary structures S3 = {C, H, E}. The overall Q8 and Q3
accuracy are defined as follows:

Q8(Q3) =

∑
ns

Ns
× 100, s ∈ S8(s ∈ S3) (1)

where Ns is the total number of residues that are of state s
and ns is the total number of correctly predicted residues of
state s.

SOV measures the agreement between predicted and
observed secondary structures at the segment level.
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FIGURE 2. Framework of the base-model.

The formula for SOV is defined as shown in Equation (2),
at the bottom of the page.

In this formula, SOV represents the segment overlap mea-
sure. The calculation involves dividing both the observed and
predicted secondary structure sequences into segments that
satisfy certain constraints. The variables i and j represent the
starting and ending residues of a segment, while s represents
the conformational state.

The sets Xs, Ss, Ts, and Us are defined as follows: Xs
is the set of all segments in state s for which there are no
overlapping segments in the same state; Ss is the set of all
overlapping pairs of observed segments in state s; Ts is the
set of all overlapping pairs of predicted segments in state s,
and Us is the union of all sets of overlapping segment pairs
for all conformational states derived from the dataset being
evaluated.

The lengths of observed and predicted segments are
denoted by Lobsij and Lpredij , respectively. The formula calcu-
lates the sum of the minimum value between observed and
predicted segment lengths for each segment in state s, divided
by the sum of the observed and predicted segment lengths,
minus the sum of the minimum value between observed and
predicted segment lengths for all overlapping segment pairs.
The formula can be modified to use a 3-state instead of eight
by substituting the appropriate sets and lengths for the 3-state
case.

In addition to the model accuracy and SOV, we also looked
into the precision, recall, and F1-score to better understand
how different techniques performed. In classification prob-
lems, high precision indicates that the predicted structures are
very accurate and have very few false positives, while high
recall indicates that the predicted structures are able to iden-

SOV

∑8
s=1

∑
(i,j)∈Xs min(Lobsij ,Lpredij )∑8

s=1
∑

(i,j)∈Ss L
obs
ij +

∑8
s=1

∑
(i,j)∈Ts L

pred
ij −

∑8
s=1

∑
(i,j)∈Us min(Lobsij ,Lpredij )

(2)
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FIGURE 3. The architecture of the proposed Multi-S3P. Part (a) is a specialized network in
recognizing helices structures, Part (b) is a specialized network in recognizing coils structures,
and Part (c) is a specialized network in classifying sheets structures.

tify most of the true positives. A high F1-score indicates that
the predicted structures are both accurate and comprehensive,
striking a good balance between precision and recall [73].

V. RESULTS AND DISCUSSION
This section presents detailed experimental findings of the
proposed deep neural networks on many commonly used
datasets, as well as performance comparisons with existing
approaches. After multiple experiments based on a different
combination of neural networks and feature sets, we have
selected the best model (Multi-S3P). We repeated the training
process five times for each model. Then, we calculated
the mean prediction accuracy for each model on the val-
idation set. Based on the validation results, we selected
our best-performing model (Multi-S3P) to evaluate against
benchmark test sets. Table 3 showcases the performance of
the proposed two different deep learning models, base-model
and Multi-S3P, in predicting Q3 and Q8 secondary structures
on the validation set.

Table 4 compares the performance of various secondary
structure prediction methods on two datasets, TEST2016 and
TEST2018. The methods evaluated include SPIDER3 [31],
SPOT-1D [32], PSRSM [20], Porter5 [58], MUFOLD-
SS [19], NetSurfP-2.0 [38], SAINT [9], and two methods
(Base-model andMulti-S3P) proposed in this study. The table
reports the Q3 Accuracy, SOV3, Q8 Accuracy, and SOV8
scores of each method on both datasets.

The results show that Multi-S3P achieves the best per-
formance on both datasets, with the highest Q3 Accuracy,
SOV3, Q8 Accuracy, and SOV8 scores. The Q3 accuracy
score is 87.57% on TEST2016 and 86.46% on TEST2018.
Similarly, the Q8 accuracy score is 77.56% on the TEST2016
and 76.12% on the TEST2018 test set. The performance of
the Base-model is comparable to that of SPOT-1D on both
datasets. The other methods have varying levels of perfor-
mance on different aspects of the prediction task.

Table 5 presents a comprehensive comparison of Q3 and
Q8 secondary structure prediction performance scores of
several protein structure predictors, including state-of-the-art
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TABLE 3. The Q3 and Q8 secondary structure prediction performance scores (%) on validation set.

TABLE 4. Comparison of Q3 and Q8 secondary structure prediction performance scores (%) of various predictors on TEST2016 and TEST2018. The superior
results are visually emphasized in bold font. The absence of a result is denoted by the symbol ‘‘−’’.

methods such as DeepCNF [37], SPIDER3 [31], Porter5 [58],
MUFOLD-SS [19], SPOT-1D [32], DNSS2 [24], and
DLBLS-SS [40], as well as two methods proposed in the
paper the Base-model and the Multi-S3P. The table provides
a clear representation of the experimental results obtained on
the CASP12 and CASP13 datasets, with the Q3, Q8 accuracy
and SOV measure for each method. The superior results are
visually emphasized in bold font.

It is evident from the results presented in the table that
the Multi-S3P outperformed the other methods in terms of
Q3 and Q8 accuracy, achieving a Q3 accuracy of 82.54%
and a Q8 accuracy of 72.28%. The Base-model, on the
other hand, achieved a Q3 accuracy of 82.18% and a Q8
accuracy of 71.95% on the CASP12 test set. Similarly,
Multi-S3P achieved a Q3 accuracy of 83.02% and Q8
accuracy of 73.17% on the CASP13 dataset. These results
demonstrate the effectiveness of the proposed Multi-S3P
and its potential to improve secondary structure prediction
performance.

Tables 6 - 8 display the precision, recall, and F1-score
of the Q8 class classification obtained by our proposed
method as well as three other state-of-the-art methods on
the TEST2016 test set, respectively. The outcomes suggest
that our Multi-S3P achieved a superior F1-score compared to
other methods in five classes (out of Q8 classes), indicating

that our proposed method in this study generated more
balanced and significant outcomes than other predictors.
Specifically, the proposed method performed exceptionally
well on the non-ordinary Q8 classes, such as I, G, S, and
T [37], outperforming other methods. However, MUFOLD-
SS attained a better F1-score for the B class, while SPOT-
1D achieved marginally better results for the H and E
classes of Q8.

Classes isolated β−bridges (B), the 310-helix (G), and
Bends (S) exhibit poor performance in terms of F1-score
compared to other classes. These classes are characterized
by greater conformational flexibility, which poses challenges
for accurate prediction. Class B are rare and lacks distinct
sequencemotifs, making it difficult to differentiate them from
other structures. The irregular hydrogen bonding pattern of
G and their absence of prominent sequence motifs contribute
to their challenging prediction. Bends lack well-defined sec-
ondary structures. Predicting bends accurately can be chal-
lenging due to their diverse structural characteristics and the
absence of specific sequence motifs associated with them.
Another important reason is that compared to other secondary
structure types, these classes are less abundant in protein
databases, resulting in relatively fewer instances available
for training deep learning models. This limited availability
of training data for these classes can impact the model’s
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TABLE 5. Comparison of Q3 and Q8 secondary structure prediction performance scores (%) of various predictors on CASP12 and CASP13 dataset. The
experiment’s superior results are visually emphasized in bold font. The absence of a result is denoted by the symbol ‘‘−’’.

ability to learn and generalize well, leading to poorer perfor-
mance [9], [43].

Addressing these challenges requires the development of
more sophisticated prediction methods that can capture the
nuanced characteristics of these classes. Incorporating addi-
tional informative input features can help improve the pre-
diction. Our ongoing research efforts aim to enhance the
accuracy and reliability of prediction through advancements
in deep learning architectures and the integration of diverse
data sources and features.

A. PERFORMANCE IN BOUNDARY REGIONS
Protein secondary structure prediction can be challenging in
predicting the boundary regions between different types of SS
where one type of SS ends and another type begins. Predictors
often assign incorrect secondary structures to residues located
in the boundary regions. This is because these boundary
regions often exhibit structural ambiguity and can be difficult
to distinguish from other secondary structures [2], [22], [74].

We conducted an experiment to evaluate the performance
of predictors in these boundary regions of 8-state prediction.
Figure 4 shows the process of extracting secondary structure
boundaries. For this purpose, we loop through each label
character in the actual secondary structures (actual labels)
string and remove consecutive duplicates. For each character,
we compare them to the next character. If they are different,
it means that the boundary between two different secondary
structures has been crossed. We then add both characters
to the actual list and the corresponding characters from the
predicted secondary structures (predicted labels) string to
the predicted list. This process effectively extracts the actual
and predicted secondary structures in the boundary regions.

FIGURE 4. The extraction of secondary structure boundaries from actual
and predicted secondary structures.

The extracted actual and predicted secondary structures were
used to evaluate the accuracy of the predictor in the bound-
ary regions. The boundary regions are underlined in Fig-
ure 4. Table 9 shows the performance of Multi-S3P and
two other state-of-the-art methods in the boundary regions on
the CASP12 dataset. Our model Multi-S3P shows significant
performance in effectively predicting SS in the boundary
regions.

B. ABLATION STUDY AND INPUT FEATURE ANALYSIS
Input feature representation plays a major role in protein
secondary structure prediction. The input features in this
work are represented by a concatenation of PSSM, HMM,
7PCP and PSP19 profiles, all of which transmit evolutionary
information of amino acids in protein sequences. After deter-
mining the optimum deep learning architecture, it was used
to investigate the impact of various combinations of input
features. Table 10 shows the Q3 accuracy of different com-
binations of input features on our validation set. The PSSM
profile has greater predictive performance than the HMM
profile. When PSSM was paired with HMM, the prediction
accuracy increased by about 1.51% for Q3, demonstrating
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TABLE 6. Precision of each Q8 class classification obtained by proposed method and other three state-of-the-art predictors on TEST2016 test set. The
experiment’s superior results are visually emphasized in bold font.

TABLE 7. Recall of each Q8 class classification obtained by Multi-S3P and other three state-of-the-art predictors on TEST2016 test set. The experiment’s
superior results are visually emphasized in bold font.

TABLE 8. F1-score of each Q8 class classification obtained by Multi-S3P and other three state-of-the-art predictors on TEST2016 test set. The experiment’s
superior results are visually emphasized in bold font.

TABLE 9. The performance of Multi-S3P and other two state-of-the-arts
methods in the boundary regions on the CASP12 dataset.

TABLE 10. Q3 prediction accuracy (%) with different combinations of
input features on our validation set.

that the HMM feature was complementary to the PSSM,
which was consistent with the findings of other state-of-the-
arts predictors [19], [24], [32]. When the PSSM profile was
combined with the other three input features (HMM, 7PCP
and PSP19), the accuracy increased by 2.41%. However,
when the 7PCP and PSP19 were combined with PSSM and
HMM, the accuracy improved by 0.9%.

An ablation study is carried out using the best-performing
model to show the benefits of the CNN and LSTM network

TABLE 11. Q3 prediction accuracy (%) of individual model performance
on our validation set as compared to the ensemble performance.

we proposed. We performed this study by removing the CNN
components and LSTM components separately. In addition,
we also tested our model by removing the self-attention layer
in the output layer. Table 11 shows the individual model per-
formance on our validation set as compared to the ensemble
model (Multi-S3P) performance.

The novelty of our model lies in the combination of three
specialized deep neural models for the different types of
SS classes (sheets, coils, and helices) with a self-attention
layer to predict protein SS. We found that training sepa-
rate networks for each type and combining their outputs
through a self-attention layer led to improved performance.
This approach allows the model to capture better the unique
characteristics of each type of secondary structure and to
learn how to combine this information more effectively.
Additionally, using a self-attention layer allows the model to
focus on the most important features for predicting secondary
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structure, further improving performance. Our approach is,
therefore, a novel and effective way of predicting protein
secondary structure, with potential applications in a range
of bioinformatics and related fields. Moreover, we intro-
duced a new criterion to assess the model performance in
the SS boundary regions, which is a challenging task in
protein secondary structure prediction. Overall, the results
demonstrate that the proposed multi-network-based method
is highly effective for secondary structure prediction and
outperforms other state-of-the-art methods.

VI. CONCLUSION
In conclusion, proteins are essential for living organisms due
to their diverse functions in cells. The native 3D structure
of a protein determines its function, and misfolded proteins
can cause acute illnesses in living organisms. The computa-
tional prediction of protein structures has been developed as
an alternative to experimental techniques. The AlphaFold2
deep-learning approach has shown its full potential in pre-
dicting protein structures with high accuracy. Although the
accuracy of protein structure prediction has been increased
by deep learning techniques, the complexity of protein 3D
structures still poses a challenge for computational predic-
tion algorithms. Therefore, researchers generally divide this
problem into manageable sub-problems, such as secondary
structure prediction. Secondary structure prediction, which
is critical for predicting numerous structural features, offers
information about protein activity, functions, and relation-
ships. The integration of sequence evolutionary profile fea-
tures derived from multiple sequence alignments, such as
PSSM and the HMM feature, have played a significant role
in protein secondary structure prediction over the last few
decades.

In this paper, a multi-network-based deep learning model
(Multi-S3P) is designed to classify different classes of protein
secondary structures, including sheets, helices, and coils. The
Multi-S3P consists of three separate networks, each special-
ized in recognizing a specific type of structure. The first net-
work is dedicated to identifying helices, the second to recog-
nizing coils, and the third to perceiving sheets. The architec-
ture used CNN and BILSTM networks with a self-attention
mechanism to learn short-range and long-range interactions.
Attention mechanisms can be useful for combining informa-
tion from multiple sources and learning to focus on the most
relevant parts of the input. The four input features used were
PSSM, HMM, 7PCP, and PSP19. It is evident from the results
presented in the work that the proposed Multi-S3P outper-
formed the state-of-the-art methods in terms of Q3 and Q8
accuracy and segment overlap measure (SOV), achieving the
highest Q3 accuracy of 87.57% and a Q8 accuracy of 77.56%
on the TEST2016 test set. In addition to the model accuracy
and SOV, we employed the precision, recall, and F1-score to
better understand how different techniques performed. The
results demonstrate the effectiveness of the proposed method
and its potential to improve secondary structure prediction
performance. The combination of different input features was

shown to impact performance significantly. The PSSM pro-
file has greater predictive performance than the other profile.
Our proposed model, Multi-S3P, shows high performance in
effectively predicting SS in the boundary regions, which is
a challenging task in protein secondary structure prediction.
Overall, the proposed method provides a promising approach
for accurate secondary structure prediction of proteins. How-
ever, it is important to note that training and tuning mul-
tiple separate models with an attention-based mechanism
can be computationally expensive. Therefore, we intended
to use the lightweight language model embedding generated
by pre-trained protein language models as input features to
overcome the computation cost in our future work.

DATA AVAILABILITY
The original contributions presented in the study are included
in the article and the data and code used in this study are
available at https://github.com/mufassirin/Multi-S3P; further
inquiries can be directed to the corresponding author.
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