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Abstract: The fingerprint is a widely adopted biometric trait in forensic and civil applications.
Fingerprint biometric systems have been investigated using contact prints and latent and contactless
images which range from low to high resolution. While the imaging techniques are advancing
with sensor variations, the input fingerprint images also vary. A general fingerprint recognition
pipeline consists of a sensor module to acquire images, followed by feature representation, matching
and decision modules. In the sensor module, the image quality of the biometric traits significantly
affects the biometric system’s accuracy and performance. Imaging modality, such as contact and
contactless, plays a key role in poor image quality, and therefore, paying attention to imaging modality
is important to obtain better performance. Further, underlying physical principles and the working of
the sensor can lead to their own forms of distortions during acquisition. There are certain challenges
in each module of the fingerprint recognition pipeline, particularly sensors, image acquisition and
feature representation. Present reviews in fingerprint systems only analyze the imaging techniques
in fingerprint sensing that have existed for a decade. However, the latest emerging trends and recent
advances in fingerprint sensing, image acquisition and their challenges have been left behind. Since
the present reviews are either obsolete or restricted to a particular subset of the fingerprint systems,
this work comprehensively analyzes the state of the art in the field of contact-based, contactless 2D
and 3D fingerprint systems and their challenges in the aspects of sensors, image acquisition and
interoperability. It outlines the open issues and challenges encountered in fingerprint systems, such
as fingerprint performance, environmental factors, acceptability and interoperability, and alternate
directions are proposed for a better fingerprint system.

Keywords: finger biometrics; sensor; image acquisition; ultrasonic sensing; interoperability

1. Introduction

Biometric systems are pervasive in people’s lives and assist to authenticate their
identity reliably in many applications. Automated processes such as identification or
verification are involved in a biometric recognition system where physical or behavioral
characteristics of a biometric trait are used. Fingerprint identification is one of the most
authentic approaches for human identification [1], where ridges and minutiae (ridge
ending and branch) of the fingerprint information play a significant role in the recognition
process [2–7]. The fingerprint is the oldest and a widely adopted biometric trait in forensic
and civilian applications [8]. Until the use of DNA profiling, fingerprints were the central
identification tool in criminal investigation. Later, it was widely used in government-
related verification, for instance, integration of finger and face in passport and border
control systems [9]. The fingerprint as a biometric modality is now prevalent in multiple
applications related to civil activities such as attendance systems, access control, cellular
authentication, e-commerce and information security applications [6,10].

The fingerprint biometric system has been investigated using contact prints and latent
and contactless images ranging from low to high resolution [2]. Contact-based fingerprint
scanning systems occupy the larger portion of the state-of-the-art fingerprint recognition in
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civilian applications, while the contactless domain become attractive due to the presence
of portable, compact and high-resolution cameras with different image capture strategies
such as multispectral, multiview and 3D-image capture. While the imaging techniques
are advancing with sensor variations, the input fingerprint images are categorized as:
(i) rolled full prints, by covering the nail-to-nail region of the finger (low resolution) [11,12];
(ii) plain prints, by covering flat region of the finger [11,13]; (iii) partial prints, captured
from portable devices (high resolution) [12,14]; (iv) latent prints, acquired from touch
surfaces (high resolution) [13,15–20]; (v) multispectral [21]; and (vi) contactless (2D and
3D) images [3]. Figure 1 shows variations between such conventional contact-based and
contactless fingerprints.

Figure 1. Variations of conventional contact and contactless fingerprints: (a) plain [22]; (b) rolled [22];
(c) latent [23]; (d) partial print [24]; (e) contactless 2D [22] and (f) contactless 3D. Reprinted with
permission from Ref. [22], 2018, IEEE.

The pipeline of a typical fingerprint biometric recognition system consists of four sig-
nificant modules: the sensor module to acquire biometric images, the feature representation
module, the matching module and the decision module where scores are computed for
verification or identification of an individual [25,26]. There are certain challenges in each
module of the fingerprint recognition pipeline, particularly sensors, image acquisition and
feature representation. To select a biometric for an application, the aspects of accuracy,
performance and security are of primary importance. Image quality is crucial to obtain
desirable performance in the fingerprint systems where the image acquisition process plays
a major role to capture quality images.

In the sensor module, the image quality of the biometric traits significantly affects the
biometric system’s accuracy and performance. The image quality depends very strongly on
the modality, such as whether it is a contact or contactless image. For instance, the presence
of contamination on the finger or sensor surface and dryness or moisture on the finger
severely affect the performance of the contact acquisition. Therefore, paying attention to
imaging modality in the overall design is important to obtain better fingerprint systems.
Further, the underlying principles of the operation of the sensor can lead to their own form
of distortions during acquisition. Therefore, the fingerprint systems become challenging
due to the inconsistencies and image variations and are vulnerable to external factors which
create sensor interoperability issues [27].

On the other hand, feature extraction and decision modules solely depend on the
quality of the image, image acquisition mode, photometric and geometric variations in
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contactless mode, standard pre-processing and enhancement techniques, invariant feature
encoding or algorithms and matching algorithms or classifiers. Performance and accuracy
of the systems are affected by the combination of the above factors. These factors should be
analyzed in a comprehensive way to redirect and replace with alternatives in fingerprint
biometric systems.

The existing reviews [28,29] of fingerprint systems only analyze the imaging tech-
niques in fingerprint sensing existing for over a decade. However, the latest emerging
trends, recent advances and their challenges in fingerprint sensing have been missed. An-
other recent article [30] restricted the review to deep-learning-based methods in contactless
fingerprint recognition. Further, there is no work that explores challenges in fingerprint
systems in the aspects of the sensor level and image-acquisition level with the whole range
of fingerprints including plain, rolled, latent, partial and contactless 2D and 3D images
under a common framework. Further, recent trends in the cross-matching of existing legacy
fingerprint systems with contactless images has also been left behind, which calls for an
investigation of the existing literature in the aspects of interoperability. Since the present
reviews are either obsolete or restricted to a particular subset, this work aims to fill the gap
identified in the present fingerprint systems by comprehensively analyzing the challenges
in existing fingerprint systems ranging from contact to contactless in three major modules:
(i) sensors; (ii) image acquisition; and (iii) interoperability and proposes alternate directions
for the challenges encountered in contact and contactless imaging domains.

The remainder of the article is organized as follows: Section 2 analyzes various
types of sensing technologies and their pros and cons, while Section 3 describes image
acquisition, which covers different types of fingerprints captured from different sensing
modes. Section 4 covers the cross-matching and interoperability issues of fingerprints.
Alternatives for the challenges are outlined in Section 5, and the review is concluded in
Section 6.

2. Sensors

Fingerprint sensing is one of the most widely deployed techniques [31–33] in biometric
sensing [34,35]. Fingerprint sensors can be categorized by the way the user interacts with
them, such as contact, contactless, slap, partial, etc. [36]. Several sensing mechanisms have
been used to detect the finger’s ridge-valley structure. Based on the underlying technology
the sensors utilize, they are categorized into (i) optical sensors; (ii) capacitive sensors [37];
(iii) ultrasonic sensors; (iv) thermal sensors; and (v) pressure sensors. Figure 2 illustrates
variations of contact optical, contactless optical and capacitive sensors.

Figure 2. Variations of fingerprint sensors: (a) contact-optical [38]; (b) contactless-optical [39]; and
(c) capacitive [40]; .

Fingerprint sensing has been in development for decades. As it improves along
with signal processing technologies, many applications are coming forward. The present
competing technologies and related sensors have their own advantages and common
shortcomings, such as electrostatic discharge (ESD), mechanical and thermal effects, direct
exposure to the environment, discrimination between liveness and spoofing [29].
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In fingerprint sensing, a lot of research has been aimed in two directions: (i) integration
of fingerprint sensor with mobile phone; and (ii) advancement of stand-alone sensors. The
mobile-phone-embedded sensors offer users more convenience by allowing sufficient space.
Several prototypes have been introduced with different technologies towards mobile-
phone sensor integration: (i) Qualcomm Technologies in the ultrasonic method [35,41–43];
(ii) Synaptics [44–47] in the optical method [48]; and (iii) on-display mutual capacitance in
the capacitive method [49–51].

2.1. Optical Sensing

This is the oldest ’live-scan’ fingerprint sensor, in which a glass prism is illuminated
when a finger touches the prism. Figure 3 shows the principle behind a typical optical
sensor where ridges absorb the light, while the valleys allow the light to be reflected, and
the reflected light is caught by CCD or CMOS sensors [52]. Optical sensors are low-cost
fingerprint sensing devices comprised of the sub-techniques of reflection, transmission,
sweep, TFT and electro-optical processes [28]. The primary technique the sensor uses is
frustrated total internal reflection (FTIR) with an arrangement of a glass prism, a laser light
and a CMOS or CCD sensor. It is not easy to arrange all of them in a portable form due
to the very large focal length of small lenses. Further, it is not very easy to fool FTIR, and
therefore, the scanners are vulnerable to imprecise fingerprint imaging.

Figure 3. Optical fingerprint sensing architecture [53].

Optical fingerprint sensing technology has been advancing over the years by enhanc-
ing the product features. However, the shortcomings related to the nature of FTIR can
never be overcome. Even though optical sensing has advantages of producing low cost,
good-quality images within a large sensing area and preventing electro-static discharge
(ESD), it has the shortcomings that it cannot be shortened further due to the distance
between prism and sensor, which limits the miniaturization. Further, it is sensitive to
the contamination on fingers or platen, finger dryness and moisture, etc. Although it has
shortcomings, several work based on optical sensing were demonstrated in the literature.
The work in [54] demonstrated a 200 × 160-pixel CMOS fingerprint system-on-a-chip
where column-parallel processors are embedded on it. Since the sensors are more sensitive
to the dryness and moisture of the finger, the research group in [52] introduced a new
fingerprint sensing approach for moisturized fingers by altering lens, prism design and
optical-path structure.

On the other hand, present optical fingerprint sensing and development approaches
do not work efficiently for latent prints which present on complex surfaces. Since latent
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prints exhibit extreme degradation, low image quality and image distortion, acquiring
quality prints for reliable feature extraction from latent prints is challengeable. A recent
work [55] proposed an alternate solution to overcome this issue. To acquire high sensitive
and high-resolution latent images with less background interference, a dual-mode imaging
setup with optical and electrochemical sensing is newly introduced. This method used
conductive Ti2O3 black nanoparticles for latent fingerprint acquisition.

2.2. Capacitive Sensing

To overcome the drawbacks existing in optical sensing, capacitive silicon sensing
has emerged. Capacitance is an electrical property present between two conductive sur-
faces [28]. In capacitive sensing, many capacitance plates are embedded in a chip. When a
finger is placed, an electric charge is generated between the plate and finger. The sensor
captures the capacitance varieties from the ridge-valley pattern. Figure 4 illustrates basic
principle behind the capacitive sensor.

The existing capacitive sensors are classified as passive and active sensors [56] where
the former conjoin finger and chip capacitance, while in the latter, the signal is directly
placed on the finger to extract the fingerprint information.

Figure 4. Capacitive fingerprint sensing architecture [53].

The capacitive sensing technique is widely preferred in mobile and Internet of Things
(IOT) applications due to the light weight, less power usage, reasonable cost-effectiveness,
and convenience of embedding in the present applications [56–58]. There are several small
and low-cost capacitive sensors identified in the literature [57,59–64]. However, most of
the existing work experience the issues of finger sensitivity for wet and dry conditions
and noisy environment. These factors significantly degrade the captured image quality.
Different alternatives have been introduced in the past to enhance the captured image
quality. The work in [63] used a local threshold level, while the research group in [59]
exploited the voltage drop suppression.

A lot of research has explored integrating the fingerprint sensor in the mobile display
and improving the stand-alone fingerprint sensing [57]. The research team [49–51] exploited
on-display mutual capacitance to produce a prototype with finger-capture feature in mobile
devices. However, this approach has a drawback related to the touchscreen, which requires
a high voltage to overcome the panel and surrounding noise [50,51,65,66].

On the other hand, it is identified from the literature that many companies worked
towards the stand-alone capacitive sensor for mobile and non-mobile based setups [67].
The stand-alone sensors play the key role in fingerprint recognition related alternatives.
Samsung and other companies used stand-alone sensors due to less power consumption
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and cost effectiveness [68]. The work in [57] proposed a novel design for the stand-alone
CMOS capacitive sensor using a new cell structure with effective features which enabled
stable sensitivity for various finger conditions and noise.

The benefits of adopting capacitive sensing techniques are that it is smaller in size,
consumes less power and is user friendly. However, it is vulnerable to strong external
electrical fields, ESD and is expensive. These shortcomings limit the usage of this technique
and look for alternate means [28] for replacement in fingerprint sensing.

2.3. UltraSonic Sensing

Ultrasonic fingerprint sensing can be an alternate means for the existing fingerprint
sensing modes. The principle behind the ultrasonic sensing is a medical ultrasonography
where high frequency sound waves penetrate into the skin’s epidermal layer. Since dermal
and epidermal layers have similar features, as illustrated in Figure 5, the reflected measures
are used to capture the finger image using piezoelectric materials [28].

Figure 5. Ultrasonic finger images acquired from epidermal and dermal layers. Reprinted with
permission from Ref. [33] 2016, IEEE.

The sensor has sender and receiver modules where the former sends acoustic signal
towards the finger, while the latter acquires the results when these signals backlash the fin-
gerprint surface. The principle behind the ultrasonic sensing is illustrated in Figure 6. This
sensing technique has several advantages, such as consuming low power, being insensitive
to contaminants and light and being easily transmitted through metal and glass [69,70].
Therefore, it has been attractive for use in smart phones, IOT and augmented and virtual
reality devices. To introduce ultrasonic methods in cell phones, Qualcomm technologies are
exploited [35,41–43], where the sensor is placed on screen using 700–800 µm penetration
capacity. Due to the higher cost of Qualcomm sensors, it is presently available on the latest
top-branded mobiles only [71].

Figure 6. Ultrasonic fingerprint sensing principle [72].
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This review comprehensively explores the advances devoted in ultrasonic sensor
technologies emerging from the classical piezoelectric transducers to the most recent
CMUTs and PMUTs, that are completely missed in the existing sensor-based reviews.
Piezoelectricity is the fundamental of ultrasonic sensing, and later on, lead zirconate
titanate (PZT), which is strong and has piezoelectric properties, was discovered. The
overall ultrasonic sensing technique is divided into two categories: (i) ultrasound imaging
techniques where pulse-echo imaging and impediography methods are approached and
(ii) transducer technologies where piezocomposite transducers, capacitive micromachined
ultrasonic transducers (CMUT) and piezoelectric micromachined ultrasonic transducers
(PMUT) are explored. The CMUT comprises of a high number of cells with vibration [73],
whereas the PMUT devices composed of two key piezoelectric substances: aluminum
nitride (AlN) and PZT [34].

Using the pulse-echo imaging technique, the first experiment was for live-scan finger-
print capture [74], where external focusing lenses were used and the transducer produces
a 0.2 mm spot size. In a later work, a transducer with 50 MHz was used, which permits
a resolution of 1000 dpi [75], enabled the showing of sweat pores that are not be visible
from optical sensing. Figure 7 shows the difference between capacitive and ultrasonic
sensing. However, the work in [75] has a limitation of long acquisition time, and the issue
was addressed by integrating cylindrical scanning in a later work [76]. The same research
team then demonstrated the capture of fingerprint patterns from under-skin layers without
any skin deterioration as well [77].

In early days, bulk piezoceramic transducers were exploited in classical ultrasonic
fingerprint sensing with XY mechanical scanning in mobile devices. However, it failed
to reach the portable device constraints such as the size and cost. Therefore, the research
explored CMUT- and PMUT-based approaches [78]. The first CMUT-based fingerprint
sensor was presented in 2010 [73], where remote electronics were used to read 192-element
1D line-scan array while the 2D image was acquired using mechanical scanning. However,
the interface with complexity between the sensor array and the electronics again failed to
reach the size constraint of the portable device. Even though the CMUT approach has the
limitation, the research team [79,80] investigated the possibility of capturing fingerprint
images using the impediography method with CMUT sensing.

Figure 7. Fingerprint capture from capacitive vs. ultrasonic sensors. Reprinted with permission from
Ref. [33] 2016, IEEE.

The advantage of using ultrasonic sensing is that it has higher reliability compared to
other sensing schemes as it computes the difference between the acoustic impedance of
the finger ridge-valley structure. However, a shortcoming of higher cost was experienced
in the past. To overcome the cost issue, the research team in [81] demonstrated a setup
by introducing the PMUTs, which were built using micro-fabrication, resulting in a low-
cost system, which raises privacy and security in consumer electronics. In a later work,
short-range imaging was experimented with using PMUTs arrays [82]. However, with
the absence of electronics integration, the individual display of the PMUTs in an array
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is discouraging. To achieve portable device constraints such as size and cost, there are
other techniques needing to be integrated with the existing, and the research team in [83]
presented the initial demonstration of a pulse-echo ultrasonic sensor by integrating MEMS
and CMOS wafers to meet the portable size constraint and other features such as rich signal,
less power and a less voltage interface. The similar technique was experimented in a later
work as well [32]. They implemented the ultra sensing by linking MEMS and CMOS wafers
to reach the compact size in addition to the features of rich signal efficiency, low tensile
strength and a low-voltage interface.

Apart from the above demonstrations, 3D fingerprint images were acquired using
commercial systems such as Technos-Esaote, with water as a coupling medium. The re-
search team in [69,83] introduced a sensing approach using a AlN PMUT 2D array with a
24 × 8 elements integrated with portable device electronics and CMOS technology, resulting
in a total area of 2.3 × 0.7 mm2. The work in [84] experimented with a 65 × 42 element sen-
sor using PMUTs integrated with CMOS. The array size was raised up to 110 × 56 elements,
which resulted in a fingerprint size of 4.73 × 3.25 mm2 as an upgraded version of the
sensor [33,71,84–87]. This helps to capture fingerprints at two layers (epidermis and der-
mis), as shown in Figure 5.

The research team in [88] performed a feasibility check using 1–3 piezocomposite
ultrasonic transducers to detect fingerprint patterns through pulse-echo methods. Apart
from piezoelectricity, PZT brought an effective impact in ultrasonic applications. Since the
presence of the piezoelectric property in the PZT, PMUT has been developed based on the
PZT, where the transducer comprises of an array of 50 × 50 PMUTs with the fabrication of
a sol–gel PZT technique. In a later research, the team [31] experimented with a large-area
(20 × 30 mm2) sensor with diverse functionality by integrating a thin sensor and thick
(>1 mm) mobile display. This helps to acquire fingerprint features and the finger touch
pressure level effectively.

The significance of the ultrasound sensing over other technologies is that it has the
capability to acquire a large volume of the finger, supports wet fingers and results in several
benefits: (i) distinctive feature extraction; (ii) flexibility of finger touch location due to the
large area; (iii) convenience of use; (iv) lack of vulnerability from surface contamination
and humidity [34]. Further, pulse-echo ultrasonic imaging measures images at multiple
depths from the sensor and beneath the epidermis, which resulted in the image’s resistance
to spoof attacks.

2.4. Pressure Sensing

The piezoelectric effect is the principle behind the pressure sensor, where a small
amount of current is generated when there is a physical touch of a finger with the sensor
surface which made up of a non-conducting dielectric material. The effectiveness of the
current relies on the finger pressure, and it varies as only ridges contact the sensor. Figure 8
shows the principle behind the pressure sensor. The size and resolution of the pressure
sensors are similar to the capacitive sensor. However, the material used in this technique
has low sensitivity to acquire fingerprints accurately. Further, it is less sensitive to wet and
dry conditions of the fingers.

2.5. Temperature Differential Sensing

This sensor is operated based on the temperature difference which can be generated
when two surfaces are in contact [28,89]. It is composed of pyro-electric material that
generates current with the conversion of temperature changes into a voltage. ’Atmel Fin-
gerChip’ is one of the most common thermal sensors, exploited in many publicly available
fingerprint data acquisition sensors such as FVC2004 (DB3) and FVC2006 (DB3) [89].
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Figure 8. Principle behind the pressure sensor [90].

2.6. Optical Coherence Tomography (OCT) Sensing

OCT is the latest, optical, non-destructive, non-invasive high-resolution and signif-
icant method for biomedical investigation [91]. With the recent advancement, biometric
applications have used this technique in 3D fingerprint image acquisition [92–95].

The fingerprint consists of epidermal and dermal layers to represent the surface
and internal regions of the fingerprint. Internal fingerprint surfaces are not sensitive to
wet and worn conditions and have anti-counterfeiting capacity compared with 2D finger
images. Even so, it is challenging to extract features from both layers due to the noise and
low contrast in contactless domains. To overcome this nature, the research group in [94]
introduced a spectral domain-based OCT setup which helps to extract surface and internal
features of the fingerprints effectively.

It is obvious that the OCT opens up a new trend in image acquisition for fingerprint
recognition as it has the capability to acquire in-depth information of the finger. The
research team in [93] investigated different types of fingerprints such as normal, worn-out,
artificial and degraded using a customized OCT device. Reconstruction of three subsurface
layers is proposed using the skin layer information. Later, pixel-based fusion from the three
subsurface layers was performed, which resulted a robust fingerprint recognition.

The principle behind the OCT is interferometry, where light reflected from both finger
and reference mirror is merged using a detector. Spectral modulation helps to acquire
depth information. The advantages of using OCT is that it extracts information from the
finger up to 2 to 3 mm. Since it is invariant to skin damage and helps to reconstruct the
finger, it is less vulnerable to spoof attacks.

2.7. Radio Frequency Sensing

This technique can be used to detect finger live layers. When capacitive sensors fail to
capture fingerprints, they can be replaced with RF technology. The issue in this technique
is that a gummy finger still can imitate a real finger and fool the sensor [96].

3. Image Acquisition

Finger-sensor surface contact is a key concept in fingerprint image acquisition. Physical
contact is the most adopted image capture approach which is currently in use in many
applications. Contact sensors such as optical with CCD, capacitive, and digital scanners
have been used for contact-based image acquisition. Optical sensors are beneficial for
fingerprint recognition with high-resolution images, However, they have large physical
volumes with light sources, detectors and optical parts. The work in [97] demonstrated
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an ultrathin contact-based compact camera as an alternative, where the CMOS sensor is
integrated with a microlens array and multiple block layers.

There are different scenarios to acquire contact-based fingerprints using various sen-
sors. While the imaging techniques are advancing with sensor variations, the output of the
fingerprint sensors are classified as (i) rolled full prints covering nail-to-nail area [11,12];
(ii) plain fingerprints covering flat regions [11,13]; (iii) live-scan swipe or partial fingerprints
captured from portable devices [12,14]; and (iv) latent prints captured from crime scene
surfaces [13,15–20]. Each acquisition mode can have different physical finger placement
with the sensor surface and therefore exhibits various challenges which call for alternatives.

3.1. Rolled and Plain Fingerprints

Rolled and plain fingerprints are a major contribution in contact-based image
acquisition [11,98]. The former is acquired while pressing the finger and the whole surface
of the fingertip is rolled over to scan, whereas the the latter is captured without rolling
the fingertip [99]. The low-resolution rolled and plain fingerprints are obtained from a
touch-based scanner where the finger pad is flattened against the image acquisition surface
for plain images [100]. There are several forms of distortion during contact capture as the
ridges are unambiguously recorded by this acquisition.

In general, these touch-based prints have the shortcomings of noise in images and the
skin’s wet and dry conditions [99]. There may be a contamination impurity on the surface
as well. Because of the variations on finger pressure with sensor, non-linear distortion also
can exist. Further, the factors of lack of resolution, lack of ridge detail and poor contrast
regions, less inter-class (fewer differences between two different fingers) and large intra-
class variations (multiple impressions from a single finger) as shown in Figure 9, yield a
poor performance in contact-based fingerprint systems [101].

Figure 9. Typical challenges in contact-based fingerprints: (a) blurry image [102] ; (b) distorted
print [103]; (c) degraded print [104]; (d,e) deformed prints [104]; (f) partial finger capture.

On the other hand, for the rolled fingerprints, 3D finger structure is converted into
a 2D plane by rolling the finger across the capture surface [100]. Rolled fingerprints have
comparatively a larger fingerprint area than flat fingerprints, which helps to extract more
minutiae. They are demanded in many fields, including military environments and civil
applications. The challenge that has been experienced for a long time is the distortion due
to too much or insufficient pressure of the finger with the capture surface or ink during
finger registration, which needs human supervision. Due to the elastic deformation of
fingertips, the mosaicking gaps can be visible and locating them is difficult [11].

For the inked fingerprint capture, over- and under-inking and sliding of the finger
with the surface also can be possible. The digital image of the print on the card is a
representation of the finger captured from inked impressions, which is a second-order
representation of the ridge structure of the finger surface [100]. Therefore, the degree
of fingerprint quality is constrained by the defects that occur before the finger image
digitization process. Additional errors also can be possible from optical scanning during
the inked impression/digital form image conversion.
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3.2. Latent Fingerprints

Latent prints are used more in law enforcement and forensic applications. Most
techniques for acquiring these prints use a method by contaminating the fingerprint with
chemicals. This makes the latent unusable for further evaluation. Alternatively, they are
acquired from high-resolution cameras to enhance the visibility of information from the
touched surfaces where the latent print presents [16]. Though there are different types of
fingerprints used, latent prints become dominant and broadly exploited as evidence in law
enforcement, mostly used in Federal Bureau of Investigation (FBI) databases. However,
most forensic finger-mark evidence has not been scientifically validated yet [105]. The
comparison of finger-marks with the reference fingerprints is becoming challenge in latent
fingerprint recognition, and therefore, automated fingerprint identification systems are still
in the growing stage, which needs an enhancement to be compatible with the environment
of latent vs. digital image matching.

The challenges in latent prints are computational: (i) lack and poor quality of ridge
information in partial latents; (ii) background noise; (iii) lack of contrast and blurring and
poor clarity due to the distortion; (iv) having fewer minutiae due to small capture area
of a finger; and (v) overlapped fingerprints [20]. The presence of fewer minutiae, having
poor clarity of ridges and skin distortion make the latent fingerprint systems practically
slower, which demands further investigation of the latent fingerprint systems for automated
methods. On the other hand, the marks obtained from crime scenes can vary and range
from partial finger, palm or entire hand. Sometimes, forensic experts cannot identify the
region where the print actually locates on a hand of an individual. Further, cross-modality
matching of fingerprints transferred from the rigid objects with direct finger photos also
offers challenges.

3.3. Partial Prints

Advancement of high-resolution sensors attracted fingerprint biometric recognition
in recent years. Civil applications adopt plain fingerprints using consumer electronic
devices. Because of the trend of using miniaturized portable and lower-cost fingerprint
scanners, people tend to move towards partial prints. Classical full-size and low-resolution
fingerprints differ from high-resolution partial prints which result in smaller areas of the
prints. With the use of larger print areas in rolled and plain fingerprints compared to partial
fingerprints with smaller areas, partial fingerprint matching has received attention in
improving performance these days [14,106]. However, there are three significant challenges
identified in the use of partial fingerprint systems.

1. Small area limits the feature points
The size of the scanners used for partial prints is only 12.7 × 16.0 mm2 [107]. The
study proves that decreasing the active area limits the feature points acquired from
fingerprint capture region and decreases the performance gradually [108]. Therefore,
the fingerprint recognition methods significantly degrade, which urges the use of
intelligent portable devices, especially for wearable devices.

2. Fingerprint image quality
Since the quality is an important concept in fingerprint recognition, low-quality images
are even worse in partial prints, as illustrated in Figures 10 and 11. The practical
issue is that when we focus on portability, then image quality is compromised, and
therefore, there is a trade-off issue between these two qualities in partial fingerprints.
The study in [109] shows that partial prints can have 3–15 minutiae within a small
area, which is comparatively lower than in a large area. Because of the presence of
or lack of minutiae or feature points due to the small print size and poor quality,
specialized algorithms are required to extract pores and ridge contour features.

3. Image capture condition
There are several varying conditions such as humidity on skin and changes in lighting
and temperature during image capture. Therefore, adopting a generalized algorithm
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for these varying conditions also can be a challenge, which urges the biometric
industry to find alternative solutions.

4. Geometric variations
Geometric variations and need for image pair alignment during the matching process
are other factors which cause a negative impact on the partial-fingerprint-based recog-
nition systems [110].

In a summary, direct physical finger-sensor surface contact yields a set of challenges.
Non-linear deformation arises due to the nature of the elasticity of the skin and signif-
icantly degrades the matching performance. The other concern with the contact-based
approach is that the latent of the previous attempt left on the surface can be copied and
taken for illegitimate use. This leads to a security risk through spoof attack. Further, the
challenges such as contamination with the surface, hygienic issues, image distortion and
elastic deformation due to the pressure [22], surface artifact or wetness and a lengthy time
consumption for scanning also result in the call for an alternate approach for contact-based
acquisition. Therefore, it is necessary to move towards the contactless domain, which uses
several advanced strategies to eliminate these issues by using digital cameras to capture
adequate resolution and quality prints. Table 1 summarizes fingerprint image acquisition
modes and their related issues.

Figure 10. Partial fingerprints acquired from different fingerprint skin conditions using optical sensor
(800 ppi): (a) images acquired under normal humidity; (b) images acquired under dry skin. Reprinted
with permission from Ref. [99] 2022, IEEE.

Figure 11. Full fingerprint vs. corresponding partial fingerprints: (a) full fingerprint acquired using
capacitive sensing with 500 ppi resolution; (b,c) corresponding partial prints with respect to red
and blue squares on the full fingerprint. They are acquired using under-screen optical sensing with
800 ppi resolution. Reprinted with permission from Ref. [99] 2022, IEEE.
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Table 1. Image Acquisition Mode.

Mode of Acquisition Related Issue

Contact acquisition
Ridge structure of the fingerprint in 3D form is eliminated
while contacting with the surface.
Insufficient and too much pressure can affect the ridge surface.

Flat Fingerprint Acquisition
Finger surface flattened against the surface of the sensor.
Different forms and ranges of distortion may occur during
the capture

Rolled Fingerprint Acquisition 3D finger structure is converted into a 2D plane by rolling
the finger.

Iinked Fingerprint Acquisition

The print impressed on the card is a representation of the ridge
surface friction.
The digital image acquired from the card by inked impression
is a second-order representation of the ridge structure.
Errors may occur when converting the inked impression to
digital form via optical scanning.

Contactless Acquisition Optical representation of an Illuminated finger surface is repre-
sented in optical where 3D structure is turned into a 2D plane.

Further, contact fingerprints can have different challenges due to the variations in
image acquisition modes. Sensor variation generates different output images: full, live-scan
partial prints and latent. This challenges the feature representation and matching algorithms
by demanding invariant features for geometrical variations. In addition, there are imaging-
level variations in partial fingerprint recognition. Fingerprint sensor interoperability is the
main concern due to the variations in image acquisition because, in practice, the automated
fingerprint identification process needs to compare and match the fingerprints captured
from different devices. Figure 12 illustrates quality variations in partial prints acquired
from different sensors.

Figure 12. Quality variations of partial fingerprints acquired from different sensors; (a) FVC2006
DB1; (b) AES3400; (c) ZJUPartial. Reprinted with permission from Ref. [99] 2022, IEEE.
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In the image acquisition module, output image quality from the contact-based sensor
significantly affects the fingerprint system’s accuracy and performance. The performance
of the fingerprint system is evaluated based on false accept rate (FAR), false reject rate (FRR)
and equal error rate (EER) during matching of two prints [111]. The image quality challenge
can be mitigated by paying attention during the image acquisition process. Some of the
precautions in quality and safeguard health can help to eradicate them. For instance, wiping
or cleaning the contact surface before image capture and cleaning the finger tip before and
after use can be some steps. Further, using image quality estimation algorithms can help to
select quality prints and discard the useless images before entering into the system.

Pre-processing using standard enhancement techniques can also help in this regard.
Structured noise generally exists on fingerprint due to stains, lines, overlapping back-
ground prints. These environmental effects in degraded fingerprints can be overcome by its
restoration using image-processing-based or learning-based enhancement models. The gen-
erative adversial network (GAN) is the state-of-the-art image generation or enhancement
techniques. The researchers in [112] recently demonstrated that the channel refinement-
generative adversial network, which is one of the degraded fingerprint restoration methods,
outperformed than the GAN and classical image processing enhancement.

Invariant feature representation and matching also can be investigated to preserve the
performance of the system. However, in practice, matching process needs to be performed
between different types of image pairs: (i) full fingerprint vs. partial captured from different
sensors [7]; (ii) latent vs. full print; (iii) latent vs. contactless image; and (iv) contact vs.
contactless [113]. Therefore, the algorithm implemented for a fingerprint system that uses
images acquired from a particular mode of acquisition cannot be successful in other mode
of prints. This calls for an investigation of the existing fingerprint systems to inter-operate
feature encoding and matching algorithms.

3.4. 2D Contactless Fingers

Contactless fingerprint recognition has received an alternate means to contact-based
systems and extra attention due to the hygienic nature of the sensor. The pandemic also
encourages the actual necessity of the contactless biometric systems. However, investiga-
tions in contactless fingerprint domains were initiated with the 2D approach early in the
past and have been continuing to date in 3D-sensing technology [114]. Recent advances in
smartphone cameras also motivated the capture of contactless finger images due to less
cost and the portable unconstrained nature of the devices [115–117].

Contactless fingerprint images are an optical representation of 3D structure of the
finger surface onto a 2D plane. Contact fingerprints yield a first-order representation of
friction ridge surface by absorbing the light and dark of the image [100]. However, in
contactless setupss, the light and dark of the finger friction on the surface, being modeled
by illumination since reflection and shadow, lose the coupling between finger image
and the capture device. Therefore, contactless acquisition of fingerprints deviates from
contact-based image acquisition technologies. The actual finger friction ridge surface is in
3D topography, and contactless finger images are in 2D representation of 3D structures.

In 2D contactless image acquisition, one or more fingers are presented on a sensor.
The sensors can range from (i) prototype hardware for research purposes and (ii) general
purpose devices with customization of the image capture requirement [25]. In the prototypic
hardware design approach, box-like setups with LEDs were used in the early days to
maintain uniform illumination without environmental factors. Some of the setups used
finger guidance or fixed-finger placement. The common adjustments made in these setups
were strong illumination and small distance between the sensor and the finger. However,
the distortions experienced in all these constrained setups are illustrated in Figure 13.
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Figure 13. Possible distortions arise from contactless nature.

For the general purpose devices, web cams, smart phones and digital cameras were
some of the commonly used devices in the past. Due to the low cost and user convenience,
researchers used web cameras which adopted manual capture without additional illumi-
nation since external illumination severely impacts the system performance [118]. Use of
smart phones is one of the widely adopted techniques for single-finger image capture [119]
as they are widely available with quality cameras and show quick response. Since the de-
vice has additional features such as auto focus, macro lens, flash lights and on-screen finger
guidance, a convenient automatic capture of finger images is enabled using smart phones.

Digital cameras are another means to acquire contactless 2D finger images. Image
sensors based on white and LED color are primarily used in these setup [25]. Since there
are some advantages of using multi-finger over single-finger biometric systems, these
devices are widely used to capture multiple fingers as they efficiently help to extract
features from all five fingers [2,120,121]. Much contactless finger image capture work in the
literature is demonstrated under various environmental factors [115,122–125], for instance,
different background, range of lighting, indoor and outdoor image capture, etc. Table 2
illustrates an overview of the existing contactless 2D-imaging modes and the features used
with constraints.

Overall, touchless 2D systems, lighting sources and imaging cameras are placed on
the same side, and the image is captured based on the illumination reflected on the finger
ridges. In some cases, illumination sources are placed behind the fingernail side where
the illumination penetrates the fingerprint and results in the final image. Even though
the contactless systems advance over many classical features of contact-based systems,
they suffer from low contrast between ridges and valleys, which incurs well-established
enhancement techniques for feature extraction.

Further, alternative means for image acquisition are required in place of 2D devices.
An advanced setup with prototypic hardware is demonstrated in the recent past with
CNN feature extraction [126]. The prototypic hardware captures finger image usinga Rasp-
berry Pi NoIR (no infra-red) camera. Further, multispectral [21], multiview [22,127] and
3D touchless technologies have been investigated with the recent advancement strategies.
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Table 2. Summary of existing contactless 2D-imaging modes used for image capturing.

Reference Image Capture Mode Features and Constraints

Genovese et al. [128] Digital camera, green LED illumination Level-3 features

Sankaran et al. [115] Smart phone Unconstrained images, manual image capture

Canrey et al. [121] Smartphone Slap hand, on-screen guidance for multi-finger image capture.

Deb et al. [129] Smart phone Two fingers such as index and thump fingers, two commercial
apps on 3 smartphones

Birajadar et al. [130] Smart phone On-screen guidance

Kumar and Zhou [131] Webcam Low cost, no spatial illumination

Ravi et al. [118] Webcam Semi-mobile, fixed, auto-focus, noisy background

Weissenfeld et al. [132] Prototypical hardware Multi-finger capture

Kauba et al. [133] Smart phone Contact-contactless comparison

Jannis Priesnitz et al. [25] Smart phone Multi-finger capture

Attrish et al. [126] Prototypic hardware-RaspberryPi
No infra red

Single-finger photo
Minutiae and CNN features

Akmal-Jahan et al. [2,120,122] High-resolution Digital Camera
Two fingers: index and middle finger images
Multiple finger segments
Ridge orientation pattern

To mitigate the issue of performance drops in contactless matches, the image should
be carefully treated in each module of the fingerprint system pipeline. For instance, in
pre-processing, standard quality estimation mechanism and state-of-the-art image enhance-
ment techniques can be practiced, while in feature extraction, deep and invariant feature
representation can be employed [126]. For instance, in image enhancement and restoration,
generative adversial network, which is the state-of-the-art method for image generative
problems[112], can be employed. For invariant feature representation, ridge orientation
pattern can be used as it will not be affected by sensor differences [7]. Deep-learning-based
features provide a promising result compared to other hand-crafted features in recent
fingerprint experiments [22,134,135]. Further, contactless high-resolution images can also
be employed for rich ridge features which can show clear details of the texture [2,120,122].

3.5. 3D Contactless Fingers

For the 3D fingerprint capture, researchers have exploited some prototypes experi-
mented with in laboratories. They comprise different strategies and techniques: (i) struc-
tured light scanning; (ii) photometric stereo techniques; (iii) stereo vision; (iv) ultrasonic
sensing [136]; and (v) optical coherence tomography (OCT). Table 3 depicts a summary of
recent contactless 3D-imaging strategies.

1. Structured light scanning
In this approach, a set up with multiple cameras and a projector is arranged to
capture 3D images. It is noted that multiple 2D images are acquired based on pattern
illumination where 3D depth information is computed based on the triangulation
using the point correspondences between images [137]. Even though this approach
helps to obtain detailed and accurate ridge-valley and 3D depth information, it
requires a complex and expensive hardware setup [138]. Figure 14 illustrates the basic
setup of the structured light scanning.

2. Photometric stereo techniques
In this approach, many 2D images are acquired under the condition of various illu-
mination from a constant viewpoint using a high-speed camera. The main principle
behind this technique is that time of flight (ToF) and surface reflectance between
fingerprint and light source are computed [139]. A setup with a camera and multiple
LEDs is used in this approach, as illustrated in Figure 15. It is noted in the literature
that photometric stereo is the widely adopted technique among all other 3D contact-
less approaches. The main advantage is the cost effectiveness of the setup. Further,
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it results in high-quality ridge details of the fingerprints [136,140,141]. Fingerprints
are reconstructed when fixed illumination is given using 3D surface orientations.
However, unconstrained finger movements are experienced in this strategy, which
decreases the reconstruction precision of the fingerprint system.

3. Stereo vision
In this approach, two or more cameras are used from different views to capture
images [136,142,143]. 3D depth information is computed using the corresponding
points based on the triangulation. This information is used to reconstruct the 3D
images. This process has some advantages such as simplicity, affordability, and
compact setup. However, existing approaches in the literature using this strategy
have a drawback of long time consumption due to the additional computation of the
correspondences between pixel points [10]. Figure 16 illustrates the basic setup of
stereo vision scanning.

4. Ultrasonic sensing
Ultrasonic imaging is one of the 3D contactless imaging techniques where acous-
tic pulse moves forward (transmitter to fingerprint) and backward (to receiver)
directions [69,86]. There are several research using the ultrasonic finger image capture
in the literature [31–33,69,70,76,86]. Acquiring high-resolution images is the signifi-
cant advantage in ultrasonic sensing. However, large-volume hardware structures
lessen the attraction compared to other 3D contactless strategies. It is noted that
ultrasonic sensing-based 3D contactless imaging needs further investigations and
directions in future.

5. Optical Coherence Tomography (OCT)
OCT is the latest, optical, non-destructive, non-invasive high-resolution method for
3D fingerprint image acquisition [92–95]. The fingerprint consists of epidermal and
dermal layers to represent surface and internal regions of the fingerprint. Internal
fingerprint surfaces are not sensitive to wet and worn conditions, and have anti-
counterfeiting capacity compared with 2D finger images. Even so, it is challenging
to extract features from both layers due to the noise and low contrast in contactless
domains. To overcome this nature, the research group in [94] introduced a spectral
domain-based OCT setup which helps to extract surface and internal features of the
fingerprints effectively.
It is obvious that the OCT opens up a new trend in image acquisition for finger-
print recognition as it has the capability to acquire in-depth information about the
finger [93]. The principle behind the OCT is interferometry, where light reflected
from both finger and reference mirror is merged using a detector. Spectral modu-
lation helps to acquire depth information. The advantages of using OCT is that it
extracts information from the finger up to 2 to 3 mm. Since it is invariant to skin
damage and helps to reconstruct the finger, it is less vulnerable to spoof attacks as well.

Figure 14. 3D fingerprint capture using structured light scanning.
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Figure 15. 3D fingerprint capture using photometric stereo techniques.

Figure 16. Acquisition of 3D finger image using stereo vision.

Table 3. Summary of recent contactless 3D-imaging strategies.

Authors and Year 3D Imaging Strategy

2018 [140]
2013 [141] Photometric stereo

2020 [144]
2019 [145]
2017 [146]

Structured light imaging

2021 [3]
2015 [142]
2014 [147]

Active and passive stereo camera

2020 [31]
2020 [32]
2017 [86]
2016 [33]
2015 [69]
2015 [70]

Ultrasonic sensing

2022 [95]
2019 [92]
2020 [93]
2020 [94]

Optical coherence tomography (OCT)

Even though the contactless nature of imaging has advantages over contact prints,
they have their own challenges. The majority of them are photometric variations such as
lack of ridge-valley contrast, irregular illumination, and geometric variations, distortion
due to scale change and varying rotational changes such as roll, pitch and yaw of the finger,
as illustrated in Figure 13, and different backgrounds with noisy environments as well.
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Therefore, the fingerprints acquired from the contactless nature need to overcome the chal-
lenges to compete with the similar level of accuracy in fingerprints that are acquired from
contact-based methods. Apart from the geometric and photometric nature of the capturing
images, fingerprint interoperability is also a major concern where cross compatibility of
digital images is matched with their counterparts of the contact prints.

It is noted that there are currently no accepted industry standards for 3D representa-
tions of fingerprints that demonstrate compatibility with legacy fingerprint databases [100].
Further, contactless image acquisition adopts image processing techniques to convert RGB
images into greyscale and binary form, which results in a third-order representation of
the image. Therefore, handling contactless images is comparatively complex with the
counterpart of their contact prints. Therefore, there should be an investigation to evaluate
the interoperability of the contactless representations with legacy fingerprint impressions.

4. Cross-Matching and Interoperability

Cross-matching is a process of acquiring an image from one mode of capture and
matching it with an image acquired from another mode. This has the advantage that the
fingerprint systems can abstain from the process of re-enrollment of already registered
users [25]. There is a recent advancement of matching images captured from contact-based
and contactless in a single system [148–151]. Cross-matching is a key concept when any
governmental large-scale projects that work with their citizens’ existing contact-based
information by extending them in contactless domains [22]. However, storing legacy
database with contact-based fingerprints and adopting contactless system from the existing
system is a key challenge [150].

Advancement in fingerprint technologies and increase in fingerprint applications
made a way to use different fingerprints captured from various sensors. This creates
an issue in fingerprint system’s performance. For instance, applications such as security
agencies, service providers and forensic departments might use fingerprints captured
using a particular sensor. Later, authentication and verification can be performed by
different types of sensors, which leads to a problem [152]. The significant factor which
limits the use of contactless fingerprint technology is intercompatibility with their counter
touch-based fingerprints.

Since there are more centralized fingerprint identification systems deployed these
days [152], there is a need to acquire input sources from various fingerprint sensors, which
requires more attention of the emerging problem of interoperability. The interoperability
problem can be analyzed in two different directions: (i) cross-matching of fingerprints
acquired using contact-based sensors with different techniques [7,152]; (ii) cross-matching
of finger images acquired using contact-based and contactless devices [22,113].

In the recent past, several studies have explored the matching of contact-based slap im-
ages with contactless images to enhance the compatibility of matching [22,36,113,129,153–155].
A few approaches focused on cross-matching issue are identified: (i) fusion of existing
fingerprint-matching methods [27]; (ii) non-linear distortion [113]; (iii) co-occurrence of
ridge orientation (Co-Ror) [7]. Experimental methods in [7,152] satisfied the interoper-
ability between contact-based fingerprints captured using different techniques. However,
challenges exist in contact–contactless fingerprint matching, and none of them achieved
the accuracy similar to the accuracy of contact–contact matching.

It is clear that the contact-based prints should compromise the issues of deformation
due to non-uniform pressure, latent prints and noise present on the surface, while con-
tactless should compromise the issues of geometrical and photometrical variations and
deformation due to the movement. Differences in image formation and image distortion
are the two major factors impacting the performance drop during the cross-fingerprint
matching [150]. In the image formation, ridge and valley contrast is a significant cause.
Sensors record ridge-valley reflections towards the light in contactless fingerprint capture,
whereas high-contrast between ridges and valleys results in contact-based capture. For the
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distortion issue, pose variations and elastic distortions can be experienced for the same
finger in contactless and contact-based capture, respectively.

It is noted that there are some basic differences between contact-based and contactless
systems that challenge the matching compatibility of images and lead to performance
drop. The former systems acquire gray scale images and have deformation due to the
pressure, while the later systems capture RGB images that are mirrored along the vertical
axis [25]. Therefore, when handling contactless images, the process of mirroring, conversion
of RGB images to grayscale, inversion of background and foreground and estimation of
deformation need to be performed before cross-matching. However, there is still a gap for
robust deformation correction schemes, and it is yet to be implemented [156]. Figure 17
illustrates the variations of a finger captured from an individual based on contact and
contactless nature.

Another issue identified in the literature is DPI alignment for contactless images.
Contact-based devices use a metric of spatial dot density and 500 DPI is the ISO/IEC
requirement for commercial products [157], while contactless devices do not have a DPI
value. Therefore, a normalization process of contactless images to the same size and
resolution of the contact print is required. The second constraint is the estimation of ridge
frequency. In contactless images, ridge frequency increases towards borders, while it is
stable in contact-based prints due to the deformation made by finger pressure on the sensor
surface. Lin et al. [22] experimented with a deformation correction model using thin plate
splines which resulted in a positive effect on ridge estimation in contactless images.

Table 4 summarizes the existing contact–contactless fingerprint-matching databases
and imaging sensors. It is noted that all of the recent work tends to move towards finding
resolution on only a sub-domain of the challenges with full effort to obtain contactless-
touch-based fingerprint system performance similar to the state-of-the-art touch-based
fingerprint systems [36]. There is a lack of study present in the current literature for contact–
contactless fingerprint matching. Though few investigations have been carried out these
days, the matching process has challenges in different aspects of the contactless fingerprint
recognition pipeline such as image capture, image segmentation, pre-processing, feature
representation and image matching, etc. [25]. Therefore, the fingerprint recognition in
the cross-matching domain is open for researchers, and there is still further investigation
needed in the cross-matching biometric domain.

Table 4. Summary of touch-based and contactless fingerprint datasets used in the literature [36].

Database and Year Contactless Image
Acquisition Contact-Based Image Acquisition

3D Fingerprint Database-2014 [158] 3D Scanner CROSSMATCH Verifier 300 LC2.0

Man Tech-2015 [159] iPhone 4 Cross Match Guardian R2,

PolyU Contactless 2D- Contact 2D
Database-2018, [22] Low-cost camera URU 4000

Finger Photo and Slap Fingerprint
Database-2018 [129] Smartphone CrossMatch Guardian 200,

Touchless and Touch-Based Fingerprint
Database-2019 [130] Smartphone eNBioScan-C1(HFDU08)

ISPFDv2-2020 [155] Smartphones Secugen Hamster IV

Finger Photo and Touch-based
Fingerprint Database-2021 [36] Smartphones URU 4500
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Figure 17. Fingerprints acquired from a single individual using different sensing technologies.
(a) Touch-based fingerprint using the device Digital Persona (b) Touchless fingerprint from digital
camera (c) Touch-based fingerprint from Futronic (d) Rolled fingerprint. Reprinted with permission
from Ref. [22], 2018, IEEE.

5. Challenges and Alternatives

From the overall analysis, a few key challenges are identified in fingerprint systems,
which are yet to be resolved. They are (i) fingerprint performance; (ii) environmental
factors; (iii) acceptability; and (iv) interoperability. In terms of fingerprint system perfor-
mance, 2D contactless systems performed less well than contact-based systems. It can
only be enhanced by additional sophisticated and special 3D setups with a standard pre-
processing [160]. Further, mobile-based commodity devices do not result in a competitive
performance yet. Therefore, to achieve a competitive performance, all stages of the contact-
less fingerprint recognition pipeline should be carefully handled with advanced algorithms
and techniques. For instance, image acquisition phases should be carefully monitored with
homogeneous illumination, noiseless background, high-quality and speed camera. In a
similar way, pre-processing, feature extraction and matching modules were also analyzed
to attain the best-performing fingerprint system.

Environmental factors such as illumination variation, very dark and bright and noisy
backgrounds, varying camera setup and finger position with the sensor result an extremely
negative impact on a system’s performance, particularly during mobile capture. Therefore,
robust algorithms for finger detection and segmentation from the (similar skin-color)
background are essential. Standard pre-processing and quality assessment techniques
should be strictly employed with the system.

Since contactless devices have a higher acceptability compared to contact-based de-
vices, they can be further enhanced by maintaining standard distances between finger and
sensor and providing an unconstrained environment. Further, for the cross-matching and
interoperability issue, it is observed that a general effort for contact–contactless matching
is carried out. However, each module of the fingerprint recognition pipeline should be
separately investigated in cross-matching domains.

6. Conclusions

This work comprehensively analyzes the rapidly growing contact and contactless
fingerprint recognition systems with three significant modules such as sensors, image
acquisition and interoperability, and overall challenges are outlined with alternatives. In
sensing module, it features a broad spectrum on sensors with recent trends and advances,
especially in ultrasonic sensing with CMUTs and PMUTs. Further, recent advances in
OCT and its application in 3D-image sensing are discussed. In image acquisition, the
challenges of using different contact-based fingerprints such as rolled, plain, latent and
live-scan partial are analyzed. Some precautions to prevent performance drops in contact-
and contactless-based fingerprint acquisition are outlined. Further, contactless image cap-
ture strategies performed on 3D-imaging over 2D-imaging are systematically analyzed. A
general effort was performed in the domain of cross-matching in two different directions:
(i) cross-matching of fingerprints acquired using contact-based sensors with different tech-
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niques and (ii) cross-matching of finger images acquired using contact-based and contactless
devices are outlined. Even though experimental methods satisfied the interoperability
between contact-based fingerprints captured using different techniques, challenges exist in
contact–contactless fingerprint matching, and none of them achieved the accuracy similar
to the accuracy of contact–contact matching. Further, 2D contactless schemes have higher
acceptability compared to contact-based schemes, while system performance remains a
challenge; particularly, mobile-based devices are yet to reach a competitive performance
because the feature of portability on mobile devices compromises their performance. More
research is yet to be investigated for acquiring robust and interoperable fingerprint systems.
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