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Abstract The Mannar Basin plays a vital role in petroleum exploration in Sri 

Lanka, and its Barracuda exploration well was drilled up to 4206 m in depth. 

The objective of the current study is to identify mineralogy using Fourier-

transform infrared (FTIR) and X-ray diffraction (XRD) analyses. The FTIR and 

XRD analyses confirm the presence of quartz, feldspar, clay minerals (e.g., 

kaolinite, montmorillonite), calcite, and hematite in all marlstone and mudstone 

samples. These sedimentary rocks can be identified as potential petroleum 

source rocks in the Mannar Basin. Quartz, carbonate, and hematite cementations 

are directly reduced porosity and permeability, and thus primary migration of 

hydrocarbons from potential source rocks. Clay minerals act as a seal for 

hydrocarbon migrations in the Mannar Basin. A variety of dominant clay 

mineral assemblages allows the reconstruction of several paleoclimatic 

chronozones in warm/wet and arid climates. In contrast, feldspar dissolution 

promotes the primary migration of hydrocarbon from potential petroleum source 

rocks. Consequently, this study concluded that common minerals such as quartz, 

carbonate, and hematite are associated with the trapping and binding processes 

of hydrocarbons.  

Keywords: Cementation, clay mineral, petroleum source rock, primary 

hydrocarbon migration  

1   Introduction 

The Mannar Basin is the main sedimentary archive for petroleum exploration in Sri 

Lanka (Kularathna et al. 2020). It is a prolific producer of both gas and oil in the 
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currently explored deep-water area. This basin contains a thick succession of 

sediments from the Upper Jurassic to the recent age (Ratnayake, 2021a). The regional 

tectonic settings have significantly impacted the distribution of sedimentary strata 

(Ratnayake et al. 2014). Source rock quality, maturity, and reservoir rocks play vital 

roles in evaluating oil and gas potential (Jiang et al. 2015, Ratnayake et al. 2018, 

Ratnayake, 2022), and mineralogy is a crucial part of understanding the primary 

migration of hydrocarbon from the source rocks. For example, the source rock 

fragility and cementation are affected by minerals such as quartz, feldspar, and 

carbonate (Zou et al. 2010, Liang et al. 2014).  

Quartz is one of the most abundant minerals in the earth’s crust, and it plays an 

essential role in sediment composition and diagenesis. As a result, quartz is 

frequently used in mineralogical studies to determine provenance (Bahlburg and 

Floyd 1999, Bernet and Basset 2005). The differential brittleness and dissolution 

nature of feldspar also influence the porosity and permeability of the petroleum 

source rocks (Xu et al. 2013). The porosity and permeability of the hydrocarbon 

source rocks have a good relationship with the feldspar minerals due to mechanical 

characteristics such as brittleness and degree of cleavage development (Xu et al. 

2013). The diagenetic variations in clay minerals and composition are used to 

examine primary migration and the thermal history of sedimentary basins (Pollastro 

and Bohor 1993, Xu et al. 2013). Clay minerals are also used in paleoclimatic studies 

(Dera et al.  2009, Leontopoulou et al. 2019). In addition, clay minerals act as a 

catalyst and adsorbents in petroleum production (Xu et al. 2013). Furthermore, 

carbonate minerals play an essential role in predicting hydrocarbon receiver quality, 

such as the permeability and porosity of petroleum source rocks (Chen et al. 2019).  

The Mannar Basin, which stretches from southeast India to southwest-northeast Sri 

Lanka, has a total area of 45,000 km2 (Figure 1). The basement of the basin is made 

up of Precambrian high-grade metamorphic rocks (Cooray 1984, Ratnayake et al. 

2014, Kularathna et al. 2020). The tectonostratigraphic evolution of the Mannar 

Basin can be split into three phases: pre-rift, rift, and post-rift (Ratnayake 2021b). 

The middle Jurassic to Early Cretaceous period is known as the early and late rift 

phases. In addition, the early rifting of the Mannar Basin was linked to the late 

stratification of eastern and western Gondwana during the middle Jurassic 

(Ratnayake and Sampei 2015, Kularathna et al. 2020). The rift phase was linked with 

the thermal sag during the Late Cretaceous, and the post-rift phase was identified in 

the Oligocene and Miocene (Kularathna et al. 2020). From the Jurassic to the present, 

multiple rifting processes caused to deposit of terrestrial and marine sediments in the 

offshore Manner Basin over 167 million years.  

The horsts, skewed fault blocks, and compression-induced traps originated mainly 

during the rifting process, and they offer significant exploration potential in this basin 

(Ratnayake et al. 2018). The current covering of sediment around the Mannar Basin 

reaches 6 km in thickness (Kularathna et al. 2020). Major rifting events occurred 

during the Late Cretaceous due to the separation of Madagascar, Laxmi 
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Ridge/Seychelles, and Seychelles from the Indian Plate (Chatterjee et al. 2013). Both 

intrusive and extrusive igneous origins were influenced by this sequential separation 

(Ratnayake et al. 2014, Kularathna et al. 2020). Furthermore, carbonate-rich 

sediments from the Late Paleocene were discovered in the Mannar Basin, showing 

that the continental climate shifted from temperate to tropical as it traveled to the 

northward equator. Moreover, several studies have suggested the Mannar Basin is a 

sub-basin of the Cauvery Basin due to similarities in tectonic settings, geology and 

stratigraphy (Rao et al. 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 1. a) Simplified geological map of Sri Lanka showing the locations of hydrocarbon exploration 

wells in the Mannar Basin, and b) lithostratigraphic successions of Barracuda exploration well 

with sampling locations (modified after Ratnayake et al. 2018) 

 

In the deep-water Mannar Basin, Cairn Lanka Private Limited conducted drilling 

activities in exploration block SL 2007-01-001 (Ratnayake et al. 2017). Cairn drilled 

three exploration wells (Dorado, Dorado North, and Barracuda) in 2011 and one 
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exploration well (Wallago) in 2013 (Figure 1). Due to a technical issue, the Wallago 

exploration well was eventually abandoned before reaching the desired drilling depth 

(Ratnayake et al. 2017). The first natural gas finding in Sri Lanka was made in 

Campanian sandstones of the Dorado well at depths of 3044–3069 m (total thickness 

of 25 m). The second discovery was made in the Upper Cretaceous sandstones of the 

Barracuda well at depths of 4,067–4,206 m (total thickness = 24 m) (Ratnayake et al. 

2017, Kularathna et al. 2020). However, mineralogical characteristics in the Mannar 

Basin are not investigated yet. Consequently, the primary objective of this research is 

to conduct a qualitative mineralogical examination of potential petroleum source 

rocks in the Barracuda exploration well in the offshore Mannar Basin (the Indian 

Ocean). 

2 Materials and Methods 

2.1 Sample collection and preparation 

 
Sediment samples were collected from the Barracuda well (sampling depth of 2139–

4741 m) during the hydrocarbon exploration project in the Mannar Basin, conducted 

by the Petroleum Resources Development Secretariat (PRDS) Sri Lanka (Figure 1). 

The present study considered 20 representative calcareous argillaceous to arenaceous 

sediments from Late Cretaceous to Miocene. Samples were cleaned manually using 

250 ml dichloromethane: methanol 9:1 v/v solution (Ratnayake and Sampei 2019). 

The cleaning efficiency was improved by washing samples twice with 50 ml aliquots 

of dichloromethane: methanol 9:1 solution. Twenty samples were cleaned and dried 

in a fume closet for 24 hours at room temperature. After that, cleaned samples were 

powdered using a motor and petal and sieved through a 53 µm standard sieve. 

2.2 Sample analysis 

Fourier-Transform Infrared (FTIR) analysis 

A Bruker Vertex 80 FT-IR Spectrometer with an attenuated total reflection (ATR) 

sampling module and a diamond crystal plate at Sri Lanka Institute of 

Nanotechnology were used for FTIR measurements. Data were collected using the 

Opus software program, which was also utilized to adjust the background and 

baseline of each spectrum. Samples were scanned between 4000 and 400 cm-1 with a 

resolution of 4 cm-1, and spectra were converted to absorbance mode. Three 

repetitions were carried out to ensure that spectra collected on selected samples had 

similar peak positions and absorbance intensities. The raw FTIR data were 

interpreted by determining peak positions using the literature. 
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X-Ray Diffraction (XRD) analysis  

The selected samples were analyzed through a Rigaku Ultima IV X-ray 

diffractometer with Cu Kα radiation (λ = 1.54056) at Uva Wellassa University. The 

diffractograms were recorded at a scanning rate of 0.02°/second in the range of 0° to 

80° 2θ. The observed XRD peaks were identified with International Centre for 

Diffraction Data (ICDD), Inorganic Crystal Structure Database (ICSD), and 

Crystallography Open Database (COD) using Crystal Impact Match 3.0 software and 

available literature. 

3 Results 

3.1 FTIR interpretations  

 
FTIR spectra provide a qualitative examination of materials based on band types and 

positions of functional groups. The positions of observed absorption bands in each 

sample with wavenumber (cm-1), their lithology, and age are shown in Table 1. The 

Barracuda well sediments contain characteristic peaks for silicates, carbonates, and 

O-H stretching. Different lithologies, including marlstone, marlstone with black 

carbon, calcareous mudstone, and argillaceous marlstone, are observed in the 

Barracuda well (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Typical FTIR spectrum of the Mannar Basin sediments (sample no. BRC 1 sample, depth 

from 2260–2270 m) 
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All these lithologies exhibit characteristic peaks for silicates, calcite, feldspar, 

montmorillonite, and kaolinite (Figure 3). Silicates are characterized by Si-O 

stretching and bending vibrations between 800–1200 cm-1 and 400–600 cm-1 

(Sivakumar et al. 2012). The vibrational modes of carbonates (CO3
2- ions) have an 

absorption band between 1400–1500 cm-1. The peak at 798–780 cm-1 is due to Si-O-

Si inter tetrahedral bridging bonds in quartz and O-H stretching vibrations at 3400–

3750 cm-1 (Sivakumar et al. 2012, Xu et al. 2013). The weak absorption band at 

1000–1800 cm-1 and 2500–3000 cm-1 are due to C=O, C-O, and aliphatic carbon (C-

H) functional groups, respectively (Painter et al. 1981, Sivakumar et al. 2012). The 

summary of FTIR band assignments for identified different minerals in Barracuda 

well sediments is shown in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3. Representative FTIR spectra based on the lithology of Mannar Basin, Sri Lanka 
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Table 1: FTIR observations with the sample depth, age, and lithology of Barracuda well sediments. 

 

 

 

 

 

 

 

Sample 

Number 

Sample 

Depth 

(m) 

Lithology Age 
Silicate 

Minerals 
Feldspar Clay Minerals Carbonate Minerals 

    Quartz  Microcline Orthoclase Kaolinite Montmorillonite Calcite 

BRC 1 2260–2270 Marlstone with black carbon Early Middle Miocene  
460, 694, 

793 
460 – 

914, 1006, 

1002, 3621, 

3694 

3405 
873, 1420, 1633, 

1794, 2514 

BRC 2 2350–2360 Marlstone with black carbon Early Middle Miocene  692, 792 462 439 
916, 1002, 

3624, 3694 
3405 

   871, 1418, 1632, 

1795, 2514 

BRC 3 2440–2450 Marlstone with black carbon Early Middle Miocene  460, 792 
460,  538, 

1113 
438, 538 

914, 1113, 

3622, 3694 
3406 

872, 1419, 1794, 

2513 

BRC 4 2560–2570 Marlstone Early Middle Miocene  462,790 462  914, 1000, 

3621, 3691 
3407 

871, 1416, 1632, 

1795, 2512 

BRC 5 2670–2680 Marlstone Middle-Late Eocene 692, 793 – 539 

913, 1004, 

1109, 3620, 

3693 

3407 
872, 1423, 1634, 

1795, 2514 

BRC 6 2760–2770 Marlstone Middle Eocene 465, 684 – – 3624, 3698 3403 
871, 1420, 1632, 

2512 

BRC 7 2830–2840 Argillaceous marl/ marlstone Middle Eocene 462, 682 – – 
914, 1002, 

3624, 3690 
3407 

873, 1424, 1634, 

2513 

BRC 8 2900–2910 Argillaceous marl/ marlstone Early Eocene 460, 685 – – 
912, 1000, 

3619, 3689 
3401 873, 1424, 2514 

BRC 9 3030–3040 Argillaceous marl/ marlstone Late Paleocene 467, 690 638 539 
914, 1002, 

3620, 3692 
3402 

874, 1422, 1632, 

2514 
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Table 1. Continued 

 

Sample 

Number 

Sample 

Depth 

(m) 

Lithology Age 

Silicate 

Minerals 
Feldspar Clay Minerals Carbonate Minerals 

Quartz Microcline Orthoclase Kaolinite Montmorillonite Calcite 

BRC 10 
3240–

3250 

Slightly calcareous mudstone/ 

mudstone 
Late Paleocene 691 – 541 

914, 1001 

3620, 3694 
3391, 874, 1426 

BRC 11 
3320–

3330 

Slightly calcareous mudstone/ 

mudstone 
Late Paleocene 685, 786 1113 – 1113, 3624 3403 873, 1416, 1632 

BRC 12 
3420–

3430 

Slightly calcareous mudstone/ 

mudstone 
Early Paleocene 463 – 434, 588 1000 3405 

875, 1422, 1632, 

2514 

BRC 13 
3570–

3580 

Slightly calcareous mudstone/ 

mudstone 
Late Maastrichtian 465 – 547 – 3405 1424, 1634 

BRC 14 
3790–

3800 

Slightly calcareous mudstone/ 

mudstone 
Late Maastrichtian 463 – 542, 581 1000 3410 875, 1422 

BRC 15 
4020–

4030 

Slightly calcareous mudstone/ 

mudstone/ volcanic 
Late Maastrichtian – – 541,583 – 3404 1636 

BRC 16 
4380–

4390 

Slightly calcareous mudstone/ 

mudstone 
Late Maastrichtian 

694, 

779–797  
– 439, 538 1007 3402 

873, 1425, 1634, 

2512 

BRC 17 
4490–

4500 

Slightly calcareous mudstone/ 

mudstone 
Early Maastrichtian 691,792 – – 

1014, 3615, 

3698 
3407 

864, 1400, 1636, 

1795, 2512 

BRC 18 
4540–

4550 

Slightly calcareous mudstone/ 

mudstone 
Early Campanian  461, 792 – – 3698 3403 

871, 1410, 1636, 

1793, 2512 

BRC 19 
4670–

4680 

Slightly calcareous mudstone/ 

mudstone 
Early Campanian  

693, 778–

797 
 439, 546 1006 3400 

873, 1426, 1636, 

1795 

BRC 20 
4730–

4740 

Slightly calcareous mudstone/ 

mudstone 
Early Campanian  693, 788 – – – 3401 

873, 1422, 1632, 

1797, 2512 
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Table 2: FTIR band assignments for identified different minerals in Barracuda well sediments. 

Minerals Wave number (cm-1) Tentative assignments References 

Quartz 

 

 

460, 694, 793, 685, 

786, 788, 778, 797 

Si-O symmetric bending, Si-O 

symmetric stretching 

Kumar and Rajkumar (2020), 

Russell and Fraser (1987), 

Chester, R. and Elderfield, H., 

(1968) 

Feldspar 

  

421, 434, 460, 538, 

541, 588, 638, 1113 

Al-O coordination, Si-O stretching, 

O-H bending, O-H stretching, O-H 

Ghosh (1978), Kumar and 

Rajkumar (2020), Russell and 

Fraser (1987) 

Kaolinite 915, 3624, 3695 Si-O deformation, O-H 

deformation, O-H stretching 

Russell and Fraser (1987), 

Hlavay et al., (1978), Kumar 

and Rajkumar (2020) 

Montmorillonite 3405 O-H Stretching of absorbed water 

molecule 

Russell and Fraser (1987) 

Calcite 

 

 

 

875, 1422, 1636, 

2514 

C=O stretching mode vibration, 

doubly degenerate asymmetric 

stretching, O-H stretching mode 

vibration, mode vibration 

Chester, R. and Elderfield, H., 

1968, Farmer (1974), Kumar 

and Rajkumar (2020) 

 

3.2 XRD interpretations 

 

 

 

 

 

 

 

 

Fig 4. Representative XRD diffractograms based on the lithology of Mannar Basin 

(Q: quartz, K: kaolinite, M: montmorillonite, C: calcite, I: illite, H: hematite, A: albite) 

XRD analysis revealed the presence of quartz, albite, calcite, kaolinite, 

montmorillonite, illite, and hematite (Table 3 and Figure 4). XRD spectra show that 

calcite and quartz are dominant in marlstone. Quartz, illite, and calcite are dominant 

in argillaceous marlstone (Table 3). Illite, montmorillonite, kaolinite, and calcite 

dominate slightly in calcareous mudstone (Figure 4) (e.g. Butt 2012, Vaniman et al. 

2014, Rampe et al.  2017).  



B.M. Gunathilake et al.                                                    Mineralogical analysis off Mannar Basin using FTIR & XRD 

Ruhuna Journal of Science 

Vol 13 (2): 92-109 December 2022                 101 

 

 
Table 3: XRD peak positions (2θ values) and corresponding mineral phases in Barracuda well sediments 

 

 

 

 

Sample 

Number 

Sample 

Depth (m) 
Lithology Age XRD (2Ɵ) Value 

    Quartz  Albite Kaolinite Montmorillonite Illite Calcite Hematite 

BRC 1 2260 – 2270 
Marlstone with black 

carbon 
Early Middle Miocene  26.4, 39.2, 45.6 26.0 22.8, 27.0, 39.2 27.0, 32.8 27.5 

22.8, 29.2, 

35.8, 42.9, 47.3, 

48.2, 56.2, 57.3 

35.8  

BRC 2 2350 –2360 
Marlstone with black 

carbon 
Early Middle Miocene  26.4, 39.2, 45.6 26.0, 32.8 22.8, 42.0 27.6 27.5 

29.2, 35.8, 

43.0, 47.3, 48.4 

 

35.8 

BRC 4 2560 –2570 Marlstone Early Middle Miocene  26.4, 39.2 – 22.8, 39.2 27.5 27.5 
29.2, 35.8, 

42.9, 48.3 

35.8, 

39.2 

BRC 5 2670 –2680 Marlstone Middle-Late Eocene 26.4, 39.2 – 22.8, 39.2 27.8 27.8 
29.2, 35.7, 

43.0, 47.3, 48.3 
35.7 

BRC 6 2760 –2770 Marlstone Middle Eocene 20.6, 26.4, 39.2  22.8, 39.2 27.3 27.3 
29.2, 35.7, 

42.9, 47.3, 48.3 
35.7 

BRC 7 2830 –2840 
Argillaceous marl/ 

marlstone 
Middle Eocene 

20.6, 26.4, 39.2, 

49.9, 59.7 
– – – – 29.2, 36.2 – 

BRC 8 2900 –2910 
Argillaceous marl/ 

marlstone 
Early Eocene 26.4  40.1 27.8 27.8 

29.2, 35.7, 

41.9 
– 
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Table 3. Continued 

 
  

Sample 

Number 

Sample 

Depth (m) 
Lithology Age 

XRD (2Ɵ) Value 

Quartz Albite Kaolinite Montmorillonite Illite Calcite Hematite 

BRC 9 3030 –3040 
Argillaceous marl/ 

marlstone 
Late Paleocene 26.4, 49.8 – 22.9 – – 

29.2, 35.8, 

43.0, 47.4, 

48.3 

– 

BRC 11 3320 –3330 
Slightly calcareous 

mudstone/ mudstone 
Late Paleocene 

21.7, 26.3, 49.2, 

54.6, 59.7, 67.5 
– 39.2 27.5 – 

29.1, 

35.7 
– 

BRC 12 3420 –3430 
Slightly calcareous 

mudstone/ mudstone 
Early Paleocene 

20.6, 26.4, 49.9,  

54.6, 69.4 
– 39.2 27.8 27.8 29.2 – 

BRC 13 3570 –3580 
Slightly calcareous 

mudstone/ mudstone 

Late 

Maastrichtian 

21.7, 26.4,  

56.3 
30.1 

21.7, 24.2, 

41.9 
5.6, 27.5 23.4, 33.5 29.5 – 

BRC 15 4020 –4030 

Slightly calcareous 

mudstone/ mudstone/ 

volcanic 

Late 

Maastrichtian 
26.2 30.1, 51.3 

21.7, 24.1, 

35.3, 41.9 
5.6, 27.5 23.4, 33.5 29.4 – 

BRC 17 4490 –4500 
Slightly calcareous 

mudstone/ mudstone 

Early 

Maastrichtian 
26.4 – 

20.6, 

22.8, 39.2 
– 

29.2, 35.8, 43.0, 

47.3, 48.3 

29.2, 

35.8, 43.0, 

47.3, 48.3 

– 

BRC 18 4540 –4550 
Slightly calcareous 

mudstone/ mudstone 
Early Campanian  20.6 – 

12.1, 

20.6, 22.8, 

26.4, 39.2 

– 
26.4, 29.2, 35.8, 

43.0, 47.3, 48.3 

29.2, 

35.8, 43.0, 

47.3, 48.3 

– 

BRC 20 4730 –4740 
Slightly calcareous 

mudstone/ mudstone 
Early Campanian  20.6, 26.4 – 

20.6, 

26.4, 39.2 
– 26.4, 29.1, 48.2 29.1 – 
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4 Discussion  
 

4.1 The impact of the presence of quartz 

 

FTIR spectra reveal an extreme absorption band in the 900–1100 cm-1 wavelength 

range due to Si-O strong bonds in the quartz silicate structure and less intense bands 

in the 400–800 cm-1 wavelength range. These brands such as 463 cm-1, 694 cm-1, 778 

cm-1, 793 cm-1, 797 cm-1 and a doublet peak at 779–797 cm-1 were probably related to 

quartz (Sivakumar et al. 2012, Kumar and Rajkumar 2014). The distinct doublet 

peak, also known as the characteristic of quartz, can be observed in 4380–4390 m 

depth sample. Symmetrical bending and symmetrical stretching vibrations of Si-O 

can be identified at 695 cm-1 and 800 cm-1, respectively (Hlavay et al. 1978, 

Sivakumar et al. 2012).    

In this study, detrital quartz grains are subangular to subround and poorly to 

moderately sorted in an authigenic matrix. The typical authigenic cement of the 

Baracuda well is around 10%. Quartz is a generally detrital and authigenic mineral 

(Milliken 2014, Dowey and Taylor 2017). Quartz cement can be formed from the 

dissolution of biogenic amorphous silica, volcanic rock fragments, alteration of clay 

minerals, and dissolved feldspar grains. These processes are governed by internal and 

external resources (McBridge 1989, Worden and Morad 2000). Several studies show 

that quartz mineral affects the hydrocarbon reservoir and source rock quality 

(Worden and Morad 2000). The compaction of mudstones is influenced by quartz 

cementation (White et al. 2011, Peng et al. 2020). Quartz cementation is thus a 

significant process to reduce porosity and permeability (Worden and Morad 2000, 

Dowey and Taylor 2017). Therefore, quartz cementation has an impact on the 

primary mitigation of hydrocarbon in mudstones of the Mannar Basin. 

4.2 The impact of the presence of feldspar  

The bands observed at 421 cm-1, 434 cm-1, 438 cm-1, 439 cm-1, 460 cm-1, 538 cm-1, 

539 cm-1, 541 cm-1, 546 cm-1, 581 cm-1, 583 cm-1, 588 cm-1, 638 cm-1 can probably 

indicate the presence of feldspar (Sivakumar et al. 2012, Kumar and Rajkumar 2014). 

The Si-O stretching mode vibrations cause an absorbance band at 640–645 cm-1 

(Sivakumar et al. 2012). The Al-O vibration causes the orthoclase absorbance band at 

635 cm-1. The frequency at around ~440 cm-1 is due to O-H bending vibration 

(Sivakumar et al. 2012, Kumar and Rajkumar 2014). In this study, major types of 

felspar such as microcline, orthoclase, and albite can be predicted according to the 

band wavelength. However, albite was infrequent, while orthoclase and microcline 

forms predominated in several marlstone and mudstone samples (Table 1). 

The Barracuda well sediments contain a variety of feldspar group minerals such 

as microcline and orthoclase. Feldspar alteration affects the evolution of permeability 

and porosity in sedimentary rocks (Kampman et al. 2009, Ruiz-Agudo et al. 2016). 

Therefore, feldspar dissolution can increase secondary porosity (Yuan et al. 2019). 

Accordingly, the secondary porosity increases the possible primary and secondary 
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migration of oil and gas hydrocarbon. The degree of brittleness and dissolution of 

feldspar differs due to variations in crystal structure and chemical composition (Xu et 

al. 2013). However, feldspar alteration affects a significant impact on the 

permeability and porosity of source rocks and tight oil reservoirs. 

4.3 The impact of the presence of clay minerals 

The presence of kaolinite indicates the band detected at 915 cm-1, 3623 cm-1, and 

3695 cm-1 due to the O-H stretching of the inner hydroxyl group (Sivakumar et al. 

2012, Kumar and Rajkumar 2014). The amount of kaolinite varies with lithology. 

Therefore, the band intensity also changes from sample to sample (Kumar and 

Rajkumar 2014). The FTIR absorption peaks at 3405 cm-1 indicate the presence of 

montmorillonite clay (Russell and Fraser 1994, Sivakumar et al. 2012). This is due to 

water molecules vibrating in the O-H stretching mode. The intense FTIR peaks for 

montmorillonite and kaolinite were identified in all marlstone and mudstone samples. 

Therefore, montmorillonite, illite, and kaolinite are dominant clay minerals in 

Barracuda well sedimentary rocks in the Mannar Basin. 

    Montmorillonite, illite, and kaolinite are dominant clay minerals in sedimentary 

rocks of the Mannar Basin. The average clay percentage is ca. 20% in the Barracuda 

exploration well. Clay minerals in sedimentary basins are detrital or authigenic in 

origin (Raigemborn et al. 2014, Kumari and Mohan 2021). Clay minerals promote 

organic matter preservation in sedimentary rocks (Hossain et al. 2022). Additionally, 

the presence of expanding clays has specific catalytic effects on the production of oil 

as shown in oil shales.  These clay minerals are also important in predicting tectonics, 

basin evolution history, and paleoclimate.  

According to the predominant clay mineral assemblages, several paleoclimatic 

chronozones can be predicted in the Mannar Basin (Fig. 5). Montmorillonite-

dominant strata from the Early Campanian indicate an arid climate. Kaolinite-

dominant strata from the Late Campanian to Late Maastrichtian strata indicate warm 

and wet paleoclimate (Fig. 5). However, short-term global cooling events can also be 

predicted during the Late Maastrichtian. It shows that Early-Late Paleocene 

sediments from the Barracuda well indicate an arid climate in the Indian Ocean. The 

Early Eocene to Middle-Late Eocene age sediments is characterized by kaolinite-

dominant clay. Therefore, it suggests the warm and wet greenhouse paleoclimate in 

the Indian Ocean. Kaolinite-dominant Early to middle Miocene sediments can 

suggest wet climatic conditions. 

Hydrocarbon migration and accumulation are also controlled by clay minerals. For 

example, clay minerals provide an effective seal for the reservoir rocks (Zeng and Yu 

2006, Jiang et al. 2015). In addition, clay minerals accelerate porosity reduction in 

both sandstone and limestone reservoir rocks in the Mannar Basin.  
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Fig 5. Relationship between clay mineralogy and recorded regional 

tectonic/biotic/climatic events 

 

4.4 The impact of the presence of carbonate minerals 

 

The absorbance bands appearing at 876 cm-1, 1422 cm-1, 1792 cm-1 and 2516 cm-1 are 

probably linked to calcite wavelengths (Sivakumar et al. 2012, Kumara and 

Rajkumar 2014), because of the stretching vibration of C=O has the IR band between 

876 and 1792 cm-1. The O-H stretching mode vibrations cause the band at 1422 cm-1, 

and the doubly degenerate asymmetric stretching mode vibrations cause the band at 

2516 cm-1 (Sivakumar et al. 2012, Kumar and Rajkumar 2014). 

Calcite is the predominant carbonate mineral in all studied samples (Fig. 4). In 

addition, calcite is a distinguish mineral to identify main lithological changes (i.e., 

from between calcareous mudstones/mudstones/interbedded sandstone in the lower 

sedimentary succession to argillaceous marl/marlstone in the upper sedimentary 

succession) of the Barracuda exploration well (Ratnayake et al. 2014). Calcite can be 

formed by various mechanisms such as an authigenic mineral and weathered 

carbonate rock fragments (Pszonka and Wendorff 2017, Chen et al. 2019). 

Furthermore, microorganisms like coccolithophores and foraminifera play a 
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significant role in the formation of calcite-dominant sediments (e.g., Zachos et al. 

2001). The presence of sedimentary carbonate rocks can indicate the revisor quality 

strata for hydrocarbon accumulation in the Mannar Basin. However, carbonate 

cementation reduces the primary migration of hydrocarbons in the source rocks of the 

Mannar Basin. 

4.5 The impact of the presence of hematite 

Hematite is found in sedimentary rocks as detrital particles or chemical precipitates 

(Cornell and Schwertmann 2003). Quartz, feldspar, carbonate, and clay mineral 

cementation processes are common in sedimentary basins, whereas hematite 

cementation is uncommon (Chima et al. 2018). The hematite cement precipitates 

immediately in the interfacial pore space or line on grain surfaces. Previous research 

suggests that a high hematite continent reduces the permeability of source rocks (Ali 

et al. 2011). In addition, permeability is independent of the particle size of the 

hematite (Ali et al. 2011). 

5 Conclusions 

Quartz, kaolinite, montmorillonite, illite, calcite, and hematite are present in all 

marlstone and mudstone samples in the Mannar Basin. Clay mineralogy supports the 

characterization of paleoclimate such as warm/wet and arid climates. This study is 

helpful to get an idea about primary hydrocarbon migration in potential petroleum 

source rocks, based on parameters of porosity and permeability. Quartz, clay, 

carbonate, and hematite cementations reduce the primary migration of hydrocarbon 

in potential petroleum source rocks. However, feldspar dissolution enhances 

secondary porosity and permeability in potential petroleum source rocks.  
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