

Comparing the effect of P3HT and Spiro-OMeTAD as hole transport material in Sb₂S₃-based solar cells

M.A. Farhana, J. Bandara*

National Institute of Fundamental Studies, Kandy, Sri Lanka

*jayasundera.ba@nifs.ac.lk

Background: The n-i-p structured Sb_2S_3 solar cells are widely developed based on various conditions of fabrication. Generally, these types of solar cells consist of different layers. Even though a high quality of the absorber layer (Sb_2S_3) is synthesized, the compactness of each layer is beneficial to enhance the performance. In this solid-state solar cells, the Hole Transport Material (HTM) is an attractive factor due to the commercialization difficulty of liquid electrolyte solar cells.

Objectives: In this study, Sb_2S_3 solar cells were fabricated with P3HT and Spiro, which were used as HTMs to extract the holes from the absorber to find the effect of HTMs in our system.

Methods: To fabricate the device configuration of $FTO/TiO_2/Sb_2S_3/HTM/Ag$, a mixture of titanium isopropoxide, butan-1-ol, and 2-ethanolamine and a mixture of SbCl₃, thiourea, and 2-methoxyethanol used to deposit TiO₂ and Sb₂S₃ layers respectively. The P3HT and Spiro solutions were prepared by dissolving 2 mg of P3HT in 100 µl of chlorobenzene and 3.6 mg of spiro-OMeTAD, 1.4 µl of 4-tert-butyl pyridine (tBP), and 0.8 µl LiTFSI solution (520 mg LiTFSI in 1 ml of acetonitrile) in 100 µl of chlorobenzene respectively. The prepared HTM precursors were spin-coated separately on Sb₂S₃/TiO₂ at 3000 rpm for 30 s and heated on the hotplate at 100 °C for 15 mins.

Results: The power conversion efficiency (PCE) was obtained as $4.11 \pm 0.2\%$ and $4.01 \pm 0.18\%$ for the cell with spiro and P3HT respectively, by the current density (J)-voltage (V) measurements. A good current density (J) was received by Spiro (15.6 mA/cm²) than P3HT (14.05 mA/cm²), which enhanced the PCE. The EQE exhibited a wide range of spectrum for spiro-OMeTAD than P3HT, which was in good agreement with J.

Conclusion: In our system, the photo-generated electron-hole pairs are effectively separated by Spiro-OMeTAD than P3HT. The HTM plays a significant role to improve the PCE of solar device.

Keywords: Efficiency, P3HT, Sb₂S₃, Solid-state, Spiro-OMeTAD

Acknowledgment: financial assistance NRC (No 18-005)