

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

Novel Platinum-Free Counter-Electrode with PEDOT: PSS-Treated Graphite/Activated Carbon for Efficient Dye-Sensitized Solar Cells

G. K.R. Senadeera

gksen@ou.ac.lk

Open University of Sri Lanka

R. M.S.S. Rasnayake

Open University of Sri Lanka

J. M.K.W. Kumari

National Institute of Fundamental Studies

P. U Sandunika

National Institute of Fundamental Studies

M. A.K.L. Dissanayaka

National Institute of Fundamental Studies

D. L.N. Jayathilaka Open University of Sri Lanka

T. Jaseetharan

South Eastern University of Sri Lanka

P. Ekanayake

Universiti Brunei Darussalam

Research Article

Keywords: Graphite, activated carbon, PEDOT:PSS counter electrode, dye-sensitized solar cell

Posted Date: July 18th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-4594353/v1

License: (a) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Additional Declarations: No competing interests reported.

Abstract

Developing an efficient material as a counter electrode (CE) with excellent catalytic activity, intrinsic stability, and low cost is essential for the commercial application of dye-sensitized solar cells (DSSCs). Photovoltaic properties DSSCs fabricated with low-cost and platinum-free CEs based on different mixtures of carbon allotropes graphite (GR), activated carbon (AC) and PEDOT: PSS films. The DSSCs assembled with PEDOT: PSS/GR/AC showed an impressive photovoltaic conversion efficiency of 4.60%, compared to 4.06% for DSSCs with GR/AC CE or 1.66% for PEDOT: PSS alone or 6.56 % for Pt under the illumination 100 mW cm⁻² (AM 1.5 G) due to the superior electrocatalytic activity and the conductivity of AC and PEDOT: PSS. The fabricated carbon counter electrodes were extensively characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, cyclic voltammetry (CV), Tafel measurements and electrochemical impedance spectroscopy (EIS). The CV, EIS and Tafel measurements indicated that the PEDOT: PSS/Graphite/AC composite film has low charge-transfer resistance on the electrolyte/CE interface and high catalytic activity for the reduction of triiodide to iodide than the GR/AC CEs. It is potentially feasible that such a carbon configuration can be used as a counter electrode, replacing the more expensive Pt in DSSCs.

Highlights

- Proposing a novel PEDOT: PSS/Graphite/Activated Carbon composite counter electrode with better performances.
- Achieving better interaction between the electrolyte and the counter electrode.
- Power conversion efficiency of 4.60 % has been found by using the PEDOT: PSS/GR/AC counter electrode

1. Introduction

Among the third-generation photovoltaic devices dye-sensitized solar cells (DSSCs) are the most promising photovoltaic devices due to their desired properties such as straight forward fabrication process, environmental friendliness, and adequate efficiency [1]. A typical sandwich-structured DSSC consists of three primary components: a dye-adsorbed TiO_2 layer on a conductive glass substrate serving as the photoanode, an iodide/triiodide (I_3^{-}/I^{-}) redox couple as the electrolyte, and a platinized counter electrode (CE) [2]. The CE plays a crucial role in DSSCs by collecting electrons from the external circuit and catalyzing the reduction of I_3^{-} to I^- . This process demands both excellent catalytic activity and high conductivity from the CE materials [3]. Although platinum (Pt) and Pt-based materials are currently the standard catalysts for CEs in DSSCs due to their superior electron conductivity and catalytic efficiency. Their limited availability, high cost, and instability in iodine-based electrolytes pose significant challenges for large-scale commercial applications. Therefore, the development CEs of non-noble metal catalysts with competitive electrochemical performance and exceptional stability are essential for advancing sustainable energy technologies and facilitating their broader commercialization [4]. In recent