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Abstract 

Regression Analysis is one of (he most widely used statistical techniques for analyzing 
multifactor data. Its broad appeal results from the conceptually simple process of using 
an equation to express the relationship between a set of variables. Regression analysis is 
also interesting theoretically because of the elegant underlying mathematics. Successful 
use of regression analysis requires an appreciation of both the theory and the practical 
problems (hat often arise when the technique is employed with real world data. 

In the model fitting process the most frequently applied and most popular estimation 
procedure is the Ordinary Least Square Estimation (OLSE). The significant advantage of 
OLSE is that it provides minimum variance unbiased linear estimates for the parameters 
in the linear regression model. 

In many situations both experimental and non-experimental, the independent variables 
tend to be correlated among themselves. Then inter-correlation or multicollinearity among 
the independent variables is said to be exist. A variety of interrelated problems are created 
when multicollinearity exists. Specially, in the model building process, multicollinearity 
among the independent variables causes high variance (if OLSE is used) even though the 
estimators are still the minimum variance unbiased estimators in the class of linear unbiased 
estimators. 

The main objective of this study is to show that the unbiased estimation does not mean 
good estimation when the regressors are correlated among themselves or multicollinearity' 
exists. Instead, it is tried to motivate the use of biased estimation (Ridge type estimation) 
allowing small bias and having a low variance, which together can give a low mean 
square error. 

This study also reveals the importance of the theoretical results already obtained, and 
gives a path for a researcher for the application of the theoretical results in practical 
situations. 

Keywords: Multicollinearity, Least Square Estimation, Restricted Least Square 
Estimation, Modified Ridge Regression, Restricted Ridge Regression. 

Introduction 
The Problem of multicollinearity and its 
statistical consequences on a linear 
regression model are very well-known in 
statistics. The multicollinearity is defined 
as the exis tence of nearly linear 
dependency among the regressors in the 
linear model Y=Xfl+ £. The best way of 
explaining the exis tence of 
mult icoll ineari ty is to look at the 
correlation matrix of X 'X , variance 
inflation factor (IVF), and conditional 
index number. 

The existence of multicollinearity may 
result in wide confidence intervals for 
individual parameters (unstable 
estimates), may give estimates with wrong 
signs and may effect our decision in a 
hypothesis testing. Strong and Severe 
multicollinearity may make the estimates 
so unstable that they are practically 
useless. To overcome this, different 
remedial actions have been proposed. A 
popular numerical technique to deal with 
multicollinearity is that of ridge type 
regression. 
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Ridge Type Estimators in Regression Analysis 

In literature several biased estimation 
procedures were introduced for solving 
the problem of multicollinearity. Among 
them the biased regression technique 
namely, Ridge Regression Estimation 
(RRE), was first introduced by Hoerl 
(1964), and further developed by Hoerl 
and Kennard (1970a, b). Restricted Ridge 
Regression Estimation (RRRE) 
introduced by Sarkar (1992) , and 
Modified Ridge Regression Estimation 
(MRRE) introduced by Swindel (1976), 

respectively were frequently used biased 
estimation methods. These methods were 
rapidly developed in the recent years. 

The primary aim in this paper is to 
compare ridge biased estimators, with the 
same ridge type estimators and unbiased 
estimators Ordinary Least Square 
Estimator (OLSE) and Restricted Least 
Square Estimator (RLSE) by using the 
scalar mean square error matrix (mse) and 
matrix mean square error matrix (MSE). 

The Model and Estimators 

We consider the standard multiple linear regression model in matrix form 
Y^Xfi+e, (1) 

where Y is an (nx 1) vector of observations on the response (or dependent) variable, X is an 
(nxp) matrix of observations on p non stochastic explanatory variables with full column 
rank, p is a (nx 1) vector of unknown parameters associated with the p regressors, and e is 
a (nxl) vector of disturbances with expectation E(s) - 0, and dispersion (variance-
covariance) matrix D(s) = o2In. 

In the case of multicollinearity among the regressors, the Ordinary Least Squares Estimator 
(OLSE), 

fi = &iXY (2) 

is not preferred for estimating the unknown parameters in ft, where S = X"X. 
Instead the method of ridge regression has been developed by Hoerl and Kennard (1970), 
who introduced the ridge regression estimator (RRE) as 

pH=(S+kL^JCY ~WP (3) 

where W= (/ p + k&1)1. Note that when k=0, fjR= p . 
If a set of q linear restrictions is available on p\n the form 

Rp=r, (4) 

where the matrix R is a known (qxp) matrix with full row rank (q<p) and the vector r is a 
known (qxl) vector. 

The restricted least squares estimator (RLSE) of /?is another suitable estimator for handling 
collinear data, and defined as 

p; = +s-lR\RS-lJryl(r-Rfl). r 

Some other alternative bias estimators introduced in literature are 
The restricted ridge regression estimator (RRRE) p " - Sarkar (1992) 
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The modified ridge regression estimator (MRRE) b(k, b*), based on a fixed vector b' of 
prior estimate of /?- Swindcl (1976), 

b(k,6*) = (£ + W ) - , ( X , r + k / 0 ; k>0 (7) 

Statistical Properties of The Estimators 

The bias vector B(.). dispersion matrix D(.). scalar mean square error msc(.), and the 
matrix mean square error MSE(.) of OLSE, RLSE, RRE, RRRE, MRRE, LE and RLE 
are given below: 

(i) Statistical properties of unbiased OLSE 

B(/?) = 0 D(y?) = a 2 ( X ' X ) \ (8) 

mse(/0 = a 2tr(X'X)-', (9) 

and MSE(/0=a 2 (X'X)" 1 (10) 

(ii) Statistical properties of unbiased RLSE 
Letting A := S"' - S 'R(RS ' R ) 'RS ' and 8 - r - Rp then 

B(/T) = 0 D((V) = 0 2 A, (11) 

mse(P/) = a 2tr(A) + 6 ( R S ] R ) 'RS 2R'(RS R ) '5 (12) 

and MSE (n / ) = a 2 A + IS-'RXRS-'R'y'^JIS-'RXRS-'R'X'S]' (13) 

(iii) Statistical properties of biased RRE 

B(fiR) = k 2p ' (X'X + kl)"2p »( /?„) = a 2(X'X)(X*X + kl)"2, (14) 

m s c ( ^ ) = a 2 tr[(X'X + kI)- l(X'X)(X'X + kl)'] + k 2 p ? (X'X + kl)-2p, (15) 

and MSE(p R ) = o 2 (X ; X)(X T X + kl)"2 + k 2(X'X + kI)-'PP'(X'X + kl)"1 (16) 

(iv) Statistical properties of biased RRRE 

B(/y ( k/) = W5'<V - kS(k)-'/? D(P ( k /) = c 2 WAW\ (17) 

mse(P ( k )*) = oHrCWAW1) + k2f?S(ky2& (18) 

and MSE(P l k ;) = 5(k)-'La 2(5-/? ,(/f5- ,R')- 1R) + (k/?- S){kfi- S)'\S{k)A (19) 
where A = 5 1 - S ] R \ R S ' R y R S ] .S(k) = S + kl , 5 := r- Rp, and * = R\RS-lR>)$ 

(v) Statistical properties of biased MRRE 

B(b(k,b')) = - kS(k)-'(/?-/>*) D(b(k,6*)) = a 2 5 (k ) '55 (k)- ' (20) 

mse(b(k, b*)) = tr[5(k)->[o25+ k 2(/?- b')(f3- by]S{k)] (21) 

and MSE(b(k, A*)) = S{k)'] [&S + k 2(/i- b'){/3- bJ]S(kyl (22) 

Several statisticians compared the scalar 
mean square errors as well as matrix mean 
square errors of the above estimators, and 
obtained conditions for domination of one 
estimator by another estimator, These 

conditions arc strictly theoretical, and arc-
based on unknown parameters fi cf and 
also on the choice of ridge parameter k in 
the RRE, RRRE and MRRE, and d in the 
LE and RLE. 
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Mean Square Error Matrix Comparison between the Estimators 
When multicollinearity exist among the regressors the following necessary and sufficient 
mean square error matrix conditions must be satisfied for one estimator is better than the 
other estimator. 

1. Comparison between OLSE Vs RLSE 
The necessary and sufficient conditions for the unbiased RLSE is better than the 
unbiased OLSE is: 
(i) MSE(OLSE)-MSE(RLSE)isn.n.d 
(ii) (r - RPJ'CRS-'R'J-'fr - R0) < a 2 

2. Comparison between OLSE Vs RRE 
The necessary and sufficient condition for the superiority of biased RRE over the 
unbiased OLSE is: 
0 < k < o 2 / a 2 where a = P 'P and X'X = P ' A P 

max r 

3. Comparison between RRE VS RRRE 
The necessary and sufficient condition for the superiority of biased RRRE over the 
biased RRE is: 
(S + kl^S-'R'CRS-'R'JRS-'CS + klp)-' p.s.d matrix 

4. Comparison between RLSE VS RRRE 
The necessary and sufficient conditions for the biased RRRE is better than the unbiased 
RLSE is: 
0 < k < aVct*2 where a*2. = a 2. f(k. b..), where a = P 'B. 

m a x i i x i i i ' ' * 

5. Comparison between MRRE Vs RRRE 
The necessary and sufficient condition for the superiority of biased RRRE over the 
biased MRRE is: 
(i) k 2<(a 2/3 ,S-'P) 
(ii) [(P - b*)' S-'(p - V ) + (aVk^HP'S-'P - (a 2/k 2)] < [(P - b*)' S lp] 2 

Results and Discussions 

To derive the required estimators, five independent variables and a dependent variable are 
generated by using the following Monte Carlo equations. 

X r ( l - p 2 ) * z y + pz i 6 , 

Y. = (1 - p T z . + pz j 6 , i - 1, 2, 3 , . . ., 100 j = 1, 2, 3, 4, 5 (21) 

where z. z.., z „ z „ z.„ z „ and z.. are 
i, i l ' i 2 ' L_>' i 4 ' i 5 ' 16 

independent standard normal pseudo­
random numbers and p is specified so that 
the correlation between any two 
explanatory variables is given by p 2. The 

number of observations are 100 in this 
case, and the explanatory variables are 
collinear with high correlation 
coefficients. These variables are then 
standardized so that XX is in a correlation 
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form. Two different sets of correlations 
namely p = 0.95 and 0.99 are considered 
for this study. 

Using correlation matrix X'X, variance 
inflation factors and condition indices it 
can be shown that the independent 
variables are strongly and severely 
correlated among them when p = 0.95 and 
0.99. respectively. 

The methods described to estimate the 
parameters d and k in section 3 were used 
and obtained the estimators OLSE. RLSF,. 
RRE. RRRE, MRRE. LE and RLE. 

The stochastic properties of the scalar 
mean squared error (msc) and matrix 
mean square error (MSE) of parameter 
vector were computed for the set of 
estimated coefficients, and compared 
them to demonstrate the effect on 
mult icol l ineari ty. and to select the 
appropriate estimator for the given 
situation. 

Comparison between OLSE and RLSE 
When the restrictions are true the RLSE 
estimator was obtained using the methods 
suggested in section three. 

The mse parameter vector of OLSE 
and RLSE 
The scalar mean square error of the 
parameter vector (mse) is calculated using 
the expressions given in section 3 (i) & 3 
(ii) and it is given below Table 1. 

The MSE parameter vector of OLSE 
and RLSE 
When the restrictions arc true the unbiased 
RLSE is better than the unbiased OLSE 
then MSE(OLSE) - MSE(RLSE) is non-
negative definite matrix. This implies that 
the e igenvalues of the matrix 
MSE(OLSE) - MSE(RLSE) is greater 
than or equal to zero. 

The eigenvalues of the matrix 
MSE(OLSE) - MSE(RLSE) are: 
[-6.8469e-008, 5.0432e-008. 1.1462c-
007 ; 7.0672e-003 ; 1.1856e-002] and 
[-7.9947e-008 s -3.7664c-008. 2.2041e-
008, 9.0246e-003. 1.7320c-002] when 
p = 0.95 and p '- 0.99 respectively. 

If we consider the above eigenvalues three 
values are closed to zero (-6.8469e-00S. 
5.0432e-008,1.1462c-007) and other rest of 
two values are positive when p = 0.95. 
similarly three values are closed to zero 
(-7.9947C-008, -3.7664e-008, 2.2041e-008) 
and two values are positive when p = 0.99. 
So from these eigenvalues results we can say 
that the matrix MSE(OLSE) - MSE(RRE) 
is a non negative definite matrix. 

From the mse and MSE results we can 
say that the unbiased RLSE is superior 
over the unbiased OLSE when the 
restrictions are indeed correct. 

Table 1: The scalar mean square error of OLSE and RLSE 

p = 0.95 p - 0.99 

OLSE RLSE OLSE RLSE 

mse 0.05474 0.03581 0.05229 0.02594 

In both situation when p = 0.95 and p = 0.99 the scalar mean square error 
(mse) of RLSE is smaller than the OLSE. 
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Comparison between OLSE and RRE 
When p = 0.95 and 0.99, the ridge 
regression parameter k was found as 0.024 
and 0.023 respectively, using the methods 
suggested in section 3.1 (2). Using these k 
values, the RRE was obtained. 

The mse parameter vector of OLSE and 
RRE 
The scalar mean square error of the 
parameter vector (mse) is calculated using 
the expressions given in section 3 (i) & 3 
(iii) and it is given below Table 2. 

AH the above eigenvalues are positive but 
only one eigenvalue (-9.7931e-006) is 
closed to zero when p = 0.95. and also 
one eigenvalue (-7.6175e-006) is closed 
zero when p = 0.99. So it can be seen that 
matrix MSE(OLSE) - MSE(RRE) is a 
non negative definite matrix. 

According to the mse and MSE results it 
was found that the biased RRE is superior 
over the unbiased OLSE when 
0<*<0.12832, and 0<£<0.02354 for p = 
0.95 and 0.99 respectively. 

Table 2: The scalar mean square error of OLSE and RRE 

p = 0.95 p - 0 . 9 5 

OLSE RRE OLSE RRE 

mse 0.05474 0.03857 0.05229 0.01901 

When p = 0.95 and 0.99 the mse of RRE has smaller than the OLSE. 

The MSE parameter vector of OLSE 
and RRE 
The biased RRE is better than the unbiased 
OLSE when MSE(OLSE) - MSE(RRE) 
is non-negative definite matrix. It means 
the e igenvalues of MSE(OLSE) -
MSE(RRE) is greater than or equal to zero. 

The e igenvalues of the matrix 
MSE(OLSE) - MSE(RRE) are: 
[-9.793 le-006, 1.3527e-003,3.2003e-003, 
4.6277e-003,6.9983e-003] and [-7.6175e-
006, 5.8436e-003,6.6398e-003,8.7361e-
003,1.2060e-002] when p = 0.95 and p = 
0.99 respectively. 

Comparison between RRE and RRRE 
When p = 0.95 and 0.99, the restricted 
ridge regression parameter k was found 
as 0.093 and 0.295 respectively, using the 
methods suggested in section 3.1 (3). 
Using these k values, the RRRE was 
obtained. 

The mse parameter vector of RRE and 
RRRE 
The scalar mean square error of the 
parameter vector (mse) is calculated 
using the expressions given in section 3 
(iii) & 3 (iv) and it is given below 
Table 3. 

Table 3: The scalar mean square error of RRE and RRRE 

p = 0.95 p = 0.9S 

RRE RRRE RRE RRRE 

mse 0.03857 0.02605 0.01901 0.01883 

RRRE has smaller mse than the RRE at both situations p = 0.95 and 0.99. 
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The MSE parameter vector of RRE and 
RRRE 
When the biased RRRE is preferable to 
the biased RRE, the matrix MSE(RRE) -
MSE(RRRE) must be non-negative 
definite matrix. So we will consider the 
eigenvalues of MSE(RRE)-MSE(RRRE). 

The eigenvalues of the matrix MSE(RRE) 
- MSE(RRRE) arc: 
[-9.9355e-005, 4.8944e-005, 4.3287c-
003, 7.7787e-003, 1.0298e-002] and [-
9.9809e-005, 4.8030c-004, 3.1433c-003, 
3.2162e-003,3.3266c-003] when p = 0.95 
and p = 0.99 respectively. 

The above eigenvalues are positive but 
two eigenvalues (-9.9355e-005,4.8944e-
005) are closed to zero when p = 0.95, 
and one eigenvalue (-9.9809e-005) is 
closed zero when p = 0.99. So it can be 
seen that matrix MSE(RRE) -
MSE(RRRE) is a non negative definite 
matrix. 

The mse parameter vector of RLSE and 
RRRE 
The scalar mean square error of the 
parameter vector (mse) is calculated using 
the expressions given in section 3 (ii) & 3 
(iv) and it is given below Table 4. 

The MSE parameter vector of RLSE 
and RRRE 
1 f biased RRRE is better than the unbiased 
RLSE then MSE(RLSE) - MSE(RRRE) 
is non-negative definite matrix. This 
implies that the eigenvalues of 
MSE(OLSE) -MSE(RRE) is greater than 
or equal to zero. 

The eigenvalues of the matrix 
MSE(RLSE) - MSE(RRRE) are: 
[-4.7994C-005, -8.3333c-006, 6.3524e-
005, 1.4101e-003, 5.1119e-0031 and [-
5.5169e-004, 3.0820e-009, 3.5960e-004, 
9.0133e-004.1.5019e-003] when p = 0.95 
and p ~ 0.99 respectively. 

Table 4: The scalar mean square error of RLSE and RRRE 

p = 0.95 p = 0.9.9 

RLSE RRRE RLSE RRRE 

mse 0.03581 0.02929 0.02594 0.02373 

When p = 0.95 and 0.99 the mse of RRRE has smaller than the RLSE. 

From the mse and MSE results it was 
found that the biased RRRE is superior 
over the biased RRE when 0<k<0.00704, 
and 0<k<0.00153 for p = 0.95 and 0.99 
respectively 

Comparison between RLSE and RRRE 
When p = 0.95 and 0.99, the restricted 
ridge regression parameter k was found 
as 0.0068 and 0.0014 respectively, using 
the methods suggested in section 3.1 (4). 
Using these k values, the RRRE was 
obtained. 
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If we consider the above eigenvalues three 
values are closed to zero (-4.7994c-005, -
8.3333e-006, 6.3524e-005) and two 
values are positive when p = 0.95, and 
two eigenvalues (-5.5169c-004 : 3.0820e-
009) arc closed zero and three value arc 
positive when p = 0.99. So it can be seen 
that matrix MSE(RLSE) - MSE(RRRE) 
is a non negative definite matrix. 

According to the mse and MSE results it 
was found that the biased RRRE is 
superior over the unbiased RLSE when 
0<*<0.00704, and 0<£<0.00153 for p -
0.95 and 0.99 respectively. 
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Comparison between MRRE and 
RRRE 
When the restrictions are true at two 
different levels of multicollinearity p = 
0.95 and 0.99, the restricted ridge 
regression and modified ridge regression 
same biasing parameter k was found as 
0.01 and 0.00028 respectively, using the 
methods suggested in section 3.1 (5). 
Using these k values, the MRRE and 
RRRE were obtained. 

The mse parameter vector of MRRE 
and RRRE 
The scalar mean square error of the 
parameter vector (mse) is calculated using 
the expressions given in section 3 (iv) & 
3 (v) and it is given below Table 5. 

From the above eigenvalues, three values 
(-9.4351e-004, -2.1975e-009, 5.9518e-
008) are closed to zero and two 
eigenvalues positive when p = 0.95, 
similarly three eigenvalues (-9.0567e-008, 
3.0215e-008, 6.8955e-008) are closed 
zero and two value are positive when p = 
0.99. So it can be seen that matrix 
MSE(MRRE) - MSE(RRRE) is a non 
negative definite matrix. 

From the above mse and MSE results it 
was found that the biased RRRE is 
superior over the biased MRRE when 
0<Jt<0.03673, and 0<*<0.02.8983X10"1 

for p = 0.95 and 0.99 respectively. 

Table 5: The scalar mean square error of MRRE and RRRE 

p = 0.95 p = 0.9S 

MRRE RRRE MRRE RRRE 

mse 0.04443 0.02713 0.05204 0.02884 

RRRE has smaller mse than the MRRE at the same biasing parameter 
when = 0.95 and 0.99. 

The MSE parameter vector of MRRE 
and RRRE 
The biased RRRE is preferable to the 
biased MRRE, the matrix MSE(MRRE) 
- MSE(RRRE) must be non-negative 
definite matrix. So we have to consider 
the e igenvalues of the matrix 
MSE(MRRE) - MSE(RRRE). 

The e igenvalues of the matrix 
MSE(MRRE) - MSE(RRRE) are: 
[-9.435 le-004, -2.1975e-009, 5.9518e-
008, 8.4002e-003, 9.8423e-003] and [-
9.0567e-008 ; 3.0215e-008, 6.8955e-008, 
8.7652e-003, 1.6765e-002] when p - 0.95 
and p = 0.99 respectively. 

Conclusion 
When the independent variables are 
correlated among themselves , 
multicollinearity exists and the restrictions 
are indeed correct then selection of the 
above estimators are based on different 
conditions, and this study reveals the way 
to handle the theoretical results in a 
practical situation. 

The results also demonstrate the suitability 
of theoretical results when comparing the 
scalar mean square error of the parameter 
vector (mse) and matrix mean square error 
of the parameter vector (MSE) of the 
derived estimators. 
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When comparing the estimator at two 
different levels of multicillinearity (p = 
0.95 and 0.99) and the restrictions indeed 
correct the following results were obtained. 

01. The unbiased RLSE is better than the 
unbiased OLSE. 

02. The biased RRE is better than the 
unbiased OLSE when the biasing 
parameter k ranges between 
0<k<0.02832 and 0<k<0.02354 when 
p = 0.95 and 0.99 respectively. 

03. The biased RRRE is better than the 
biased RRE when the biasing 
parameter k ranges between 
0<k<0.093 and 0<k<0.295 when p = 
0.95 and 0.99 respectively. 

04. The unbiased RRRE is better than the 
unbiased RLSE when the biasing 
parameter k ranges between 
0<k<0.0074 and 0<k<0.00153 when 
p = 0.95 and 0.99 respectively. 

05. The biased RRRE is better than the 
biased MRRE when the biasing 
parameter k ranges between 
0<k<0.03673 and 0<k<2.8983X10"4 

when p = 0.95 and 0.99 respectively. 
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