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Contribution of Ridge Type Estimators in Regression Analysis
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Abstract

Regression Analysis is one of the most widely used statistical technigues for analyzing
multifactor data. Its broad appeal results from the conceptually simple process of using
an equation to express the relationship between a set of variables. Regression analysis is
also interesting theoretically because of the elegant underlying mathematics. Successful
use of regression analysis requires an appreciation of both the theory and the practical
problems that often arise when the technique Is employed with real world data.

In the model fitting process the most frequently applied and most popular estimation
procedure is the Ordinary Least Square Estimation (OLSE). The significant advantage of
OLSE is that it provides minimum variance unbiased linear estimates for the parameters
in the linear regression model.

In many situations both experimental and non-experimental, the independent variables
tend to be correlated among themselves. Then inter-correlation or multicollinearity among
the independent variables is said to be exist. A variety of interrelated problems are created
when multicollinearity exists. Specially, in the model building process, multicollinearity
among the independent variables causes high variance (if OLSE is used) even though the
estimators are still the minimum variance unbiased estimators in the class of linear unbiased
estimators.

The main objective of this study is to show that the unbiased estimation does not mean
good estimation when the regressors are correlated among themselves or multicollinearity
exists. Instead, it is tried to motivate the use of biased estimation (Ridge type estimation)
allowing small bias and having a low variance, which together can give a low mean
squdre error.

This study also reveals the imporiance of the theoretical results already obtained, and
gives a path for a researcher for the application of the theoretical results in practical
situations.

Keywords: Multicollinearity, Least Square Estimation, Restricted Least Square
Estimation, Modified Ridge Regression, Restricted Ridge Regression.

Introduction

The Problem of multicollinearity and its
statistical consequences on a linear
regression model are very well-known in
statistics. The multicollinearity 1s defined
as the existence of nearly linear
dependency among the regressors in the
linear model Y= Xf + £ The best way of
explaining the  existence of
multicollinearity is to look at the
correlation matrix of X'X, variance
inflation factor (IVF), and conditional
index number.

- The existence of multicollinearity may

result in wide confidence intervals for
individual parameters (unstable
estimates), may give estimates with wrong

~signs and may effect our decision in a

hypothesis testing. Strong and Severe
multicollinearity may make the estimates
so unstable that they are practically
useless. To overcome this, different

" remedial actions have been proposed. A
* popular numerical technique to deal with

multicollinearity is that of ridge type

" regression.
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In literature several biased estimation
procedures were introduced for solving
the problem of multicollinearity. Among
them the biased regression technique
namely, Ridge Regression Estimation
(RRE), was first introduced by Hoer!
(1964), and further developed by Hoerl
and Kennard (19703, b). Restricted Ridge
Regression Estimation (RRRE)
introduced by Sarkar (1992), and
Modified Ridge Regression Estimation

(MRRE) introduced by Swindel (1976),

The Model and Estimators
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respectively were frequently used biased
estimation methods. These methods were
rapidly developed in the recent years.

The primary aim in this paper is to
compare ridge biased estimators, with the
same ridge type estimators and unbiased
estimators Ordinary Least Square
Estimator (OLSE) and Restricted Least
Square Estimator (RLSE) by using the
scalar mean square error matrix (mse) and
matrix mean square error matrix (MSE).

We consider the standard multiple linear regression model in matrix form

Y=Xp+¢,

1)

where Yis an (nx1) vector of observations on the response (or dependent) variable, X'is an
(nxp) matrix of observations on p non stochastic explanatory variables with full column
rank, B is a (nx1) vector of unknown parameters associated with the p regressors, and ¢is
a (nx1) vector of disturbances with expectation E(g) = (), and dispersion (variance-
covariance) matrix D(&) = o°1 .

In the case of multicollinearity among the regressors, the Ordinary Least Squares Estimator
(OLSE),

g =5'XY (2)
is not preferred for estimating the unknown parameters in 8, where S = X"X.

Instead the method of ridge regression has been developed by Hoerl and Kennard (1970),
who introduced-the ridge regression estimator (RRE) as

B, =S+KLY'XY =W, (3)

where W = (I, + kS"')". Note that when k=0, g,= §.
If a set of q linear restrictions is available on fin the form

Rf=r, (4)

where the matrix R is a known (qxp) matrix with full row rank (q<p) and the vector ris a
known (qx1)} vector.

The restricted least squares estimator (RLSE) of f1s another suitable estimator for handling
collinear data, and defined as

ﬂr. = +S'R’(RS'R’)"(T-Rﬁ). (<

Some other alternative bias estimators introduced in literature are
The restricted ridge regression estimator (RRRE) S ° - Sarkar (1992)

ﬁm. =Wa5’ (6)
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The moditied ridge regression estimator (MRRE) b(k, b°), based on a fixed vector b° of
prior estimate of #- Swindel (1976),
bk, 5)=(S+ kL)' (XY +kb"); k20 (7N

Statistical Propertics of The Estimators
The bias vector B(.), dispersion matrix D(.), scalar mean squarc error mse(.), and the
matrix mean square error MSE(.) of OLSE, RLSE, RRE, RRRE, MRRE, LE and RLE

are given below:

(1) Stauistical properties of unbiased OLSE

B(g)=0 D( )= c*X'X)", (8)
mse( § ) = o’ (X'X)", (9)
and MSE(f) =0*(X'X)" (10)

(ii) Statistical propertics of unbiased RLSE
Letting A:=8"-S'R(RS'R’y'RS" and & := r - Rp} then

B(4)=0 D(B,") = oA, (11)
mse(p,) = 02r(A) + &' (RS'R’y'RS?R’(RS'R’)"'S (12)
and MSE(} ') = 6*A + |[S'R’(RS'R’Y'8){S" R (RSR’)13)’ (13)

(i1} Statistical properties of biased RRE

B(p)=KPXX+KIp  D(g,)=c{X X)X X +kI)?, (14)
mse( f£,) =02 u[(X'X + K (X'X)(X'X + KI)'] + k2B (XX +KI)2B. (15)
and MSE(g,)=c(X'X)(X'X + KI)? + k(XX + KIy'Bp° (XX + kI)"! (16)
(iv) Statistical properties of biased RRRE
B(5,,) =WS'5" -kS(k)'S  D(B,") = c"WAW’, (17)
mse(f, ) = Ot (WAW’) + k2P S(k)>F, (18)
and MSE(B ") =S(k)'[0°(S - R(RS'R'Y'R) + (k- S)kB- 518Ky (19)

(k)
where A= S - S'R(RS'R'Y'RS"' . S(k)=S+k[ ,5:=r-Rp,and " = R(RS'R")5

(v) Statstical properties of biased MRRE

B(b(k, b)) = - kS(k)'(3- &) D(b(k, b)) = o> S(ky'S S(k)'  (20)
mse(b(k, b)) = tr[S(k)'[0°S + KA(B- b)B- b)ISKk)' 1)
and MSE(b(k, 5) = S(k)" [028 + k(- 6 )(B - b°)'1S(K)" (22)

conditions are strictly theoretical, and are
based on unknown parameters £ o and
also on the choice of nidge parameter & in
the RRE, RRRE and MRRE, and ¢/ in the
LLE and RLE.

Several statisticians compared the scalar
mcan square errors as well as matrix mean
square errors of the above cstimators, and
obtained conditions {or domination of one
cstimator by another estimator. These
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Mean Square Error Matrix Comparison between the Estimators
When multicollinearity exist among the regressors the following necessary and sufficient
mean square error matrix conditions must be satisfied for one estimator is better than the

other estimator.

. Comparison between OLSE Vs RLSE

The necessary and sufficient conditions for the unbiased RLSE is better than the
unbiased OLSE is:

(i) MSE(OLSE)- MSE(RLSE) is n.nd

(ii) (r - RBY(RS'R*Y(r - RP) < 07

. Comparison between OLSE Vs RRE

The necessary and sufficient condition for the supenornty of biased RRE over the
unbiased OLSE is:

0<k<o’/o? where a=PBand X’X=P'AP

. Comparison between RRE VS RRRE

The necessary and sufficient condition for the superiority of biased RRRE over the
biased RRE is:

(S +kLY'S'R(RS'R)RS(S + K1 )' p.s.d matrix

. Comparison between RLSE VS RRRE

The necessary and sufficient conditions for the biased RRRE is better than the unbiased
RLSE is:

0 <k <o’a  where a” = o /(A b,), where oo = P°B.

. Comparison between MRRE Vs RRRE

The necessary and sufficient condition for the superiority of biased RRRE over the
biased MRRE is:

(i) k* <(c¥/f’S'B)

(i) (B - b*) S'(B -b*) + (6¥K)][B’S"'B - (6*/k*)] < [(B - b*) S"BF

Results and Discussions

‘To derive the required estimators, five independent variables and a dependent variable are
‘generated by using the following Monte Carlo equations.

Xij = (1 - pz)vzz,‘j + pzi6 >

Y =(1-piz+pz,, i=1,2,3,...,100 j=1,2,3,4,5 1)

where Z Zy, Zip Zis Zip Zis and z are
independent standard normal pseudo-
random numbers and p is specified so that
the correlation between any two
explanatory variables is given by p?. The

number of observations are 100 in this
case, and the explanatory variables are
collinear with high correlation
coefficients. These variables are then
standardized so that X’ X is in a correlation
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form. Two different sets of correlations
namely p = .95 and 0.99 are considered
for this study.

Using corretation matrix X'X, variance
mflation factors and condition indices it
can be shown that the independent
variables are strongly and severely
correlated among them when p=0.95 and
0.99. respectively.

The methods described to estimate the
parameters « and & in section 3 were used
and obtained the estimators OLSE, RLSE,
RRE, RRRE, MRRE, LE and RLE.

The stochastic propertics of the scalar
mean squared error (mse) and matrix
mean square error (MSE) of parameter

vector were computed for the set of

estimated coefficients, and compired
them to demonstrate the etlect on
multicollinearity, and to select the
appropriate estimator for the given
situation.

Comparison between OLSE and RLSE
When the restrictions are true the RLSLE
estimator was abtained using the methods
suggested in scction three.

The mse parameter vector of OLSE
and RLSE

The scalar mean square crror of the
parameter vector (mse) is calculated using
the expressions given in section 3 (1) & 3
(1) and 1t 1s given below Table 1.

The MSE parameter vector of OLSE
and RLSE

When the restrictions are true the unbiascd
RLSE is better than the unbiased OLSE
then MSEE(OLSE) - MSE(RLSE) is non-
negative definite matrix. This implies that
the ecigenvalues of the matrix
MSE(OLSE) - MSE(RLSE) is greater
than or equal to zero.

The cigenvalues of the matrix
MSE(OLSE) - MSE(RLSE) are:
[-6.8469¢-008, 5.0432e-008, 1.1462¢-
007, 7.0672e-003. 1.1850e-002] and
[-7.9947¢-008, -3.7664¢-008, 2.2041e-
008, 9.0246e-003, 1.7320¢-002] when
=095 and p = 0.99 respectively.

I/ we consider the above eigenvalues three
values are closed to zero (-6.8469¢-008,

5.0432e-008. 1.1462e-007) and other rest of

two values are positive when p = (.95,
similarly threc values are closed o zero
(-7.9947¢-008, -3.7664¢-008, 2.2041¢-008)
and two values are positive when p = 0.99.
So from these eigenvalues results we can say
that the matrix MSE(OLSE) - MSE(RRE)
is a hon negative defintte matex.

From the mse and MSE results we can
say that the unbiased RLSE is superior
over the unbiased OLSE when the
restrictions are indeed correct.
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Table 1: The scalar mean square error of OLSE and RILSE

=095 p=10.99
OLSE RLSE OLSE RLSE
mse 0.03474 0.03581 0.05229 0.02394

In both situation when p = 0.95 and p = 0.99 the scalar mean square crror

(mse) of RLSE is smaller than the OLSE.



Comparison between OLSE and RRE
When p = 0.95 and 0.99, the ridge
regression parameter k£ was found as 0.024
and 0.023 respectively, using the methods
suggested in section 3.1 (2). Using these k
values, the RRE was obtained.

The mse parameter vector of OLSE and
RRE

The scalar mean square error of the
parameter vector (mse) is calculated using
the cxpressions given in section 3 (1) & 3
(111} and it is given below Table 2.

Ridge Type Estimators in Regression Analysis

All the above eigenvalues are positive but
only one eigenvalue (-9.7931e-006) is
closed to zero when p = 0.95. and also
one eigenvalue (-7.6175¢-006) is closed
zero when p = 0.99. So it can be seen that
matrix MSE(OLSE) - MSE(RREL) is a
non negative definite matrix.

According to the mse and MSE results it
was found that the biased RRE is superior
over the unbiased OLSE when
0<k<(.12832, and 0<k<0.02354 for p =
0.95 and 0.99 respectively.

Table 2: The scalar mean square error of OLSE and RRE

p=0.95 0 =099
OLSE RRE OLSE RRE
mse 0.05474 0.03857 0.05229 | 0.01901

When p = 0.95 and 0.99 the mse of RRE has smaller than the OLSE.

The MSE paramecter vector of OLSE
and RRE

The biased RRE is better than the unbiased
OLSE when MSE(OLSE) — MSE(RRE)
is non-negative definite matrix. It means
the ecigenvalues of MSE(OLSE) -
MSE(RRE) is greater than or equal to zero.

The eigenvalues of the matrix
MSE(OLSE) — MSE(RRE) are:
[-9.7931e-006, 1.3527e-003, 3.2003e-003,
4.6277e-003, 6.9983e-003] and [-7.6175e-
006, 5.8436e-003, 6.6398¢-003, 8.7361e-
003, 1.2060e-002) whenp=0.95and p =
0.99 respectively.

Comparison between RRE and RRRE
When p = 0.95 and 0.99, the restricted
ridge regression parameter & was found
as 0.093 and 0.295 respectively, using the
methods suggested in section 3.1 (3).
Using these k values, the RRRE was
obtained.

The mse parameter vector of RRE and
RRRE

The scalar mean square error of the
parameter vector (mse) is calculated
using the expressions given in section 3
(iii} & 3 (iv) and it is given below
Table 3.

Table 3: The scalar mean square error of RRE and RRRE

p=0.95 p =099
RRE RRRE RRE RRRE
mse 0.03857 0.02605 0.01901 0.01883

RRRE has smatler mse than the RRE at both situations p = 0.95 and 0.99.
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The MSE parameter vector of RRE and
RRRE

When the biased RRRE is preferable to
the biased RRE, the matrix MSE(RRE) —
MSE(RRRE) must be non-negative
definite matrix. So we will consider the
eigenvalues of MSE(RRE)-MSE(RRRE).

The eigenvalues of the matrnix MSE(RRE)
— MSE(RRRE) are:

[-9.9355e-005, 4.8944e-005, 4.3287¢c-
003, 7.7787¢-003, 1.0298e-002] and [-
9.9809e-005, 4.8030¢-004, 3.1433¢-003,
3.2162e-003,3.3266¢-003]) when p = 0.95
and p = 0.99 respectivcly.

The above eigenvalucs are positive but
two cigenvalues (-9.9355e-005, 4 §944e-
005) are closed to zero when p = 0.95,
and one eigenvalue (-9.9809¢-005) is
closed zero when p = 0.99. So it can be
seen  that matrix MSE(RRE) -
MSE(RRRE) is a non ncgative definite
matrix.

The mse parameter vector of RLSE and
RRRE

The scalar mean square error of the
parameter vector (mse) is calculated using
the expressions given in section 3 (i) & 3
(1v) and it 1s given below Table 4.

The MSE parameter vector of RLSE
and RRRE

II'biased RRRE is better than the unbiased
RLSE then MSE(RLSE) — MSE(RRRE)
is non-negative definite matrix. This
implies that the eigenvalues of
MSE(OLSE) - MSE(RRE) 1s grcater than
or cqual to zero.

The eigenvalues of the matrix
MSE(RLSE) - MSE(RRRE) are:
[-4.7994¢-005, -8.3333¢-006, 6.3524c¢-
005, 1.4101e-003, 5.1119¢-003] and |-
5.53169¢-004, 3.0820e-009, 3.5960¢-004,
9.0133¢-004, 1.5019¢-003]) when p=0.95
and p = 0.99 respectively.

Table 4: The scalar mean square error of RLSE and RRRE

p=10.95 p=0.99
RLSE RRRE RLSE RRRE
mse 0.03581 0.02929 0.02594 0.02373

When p = 0.95 and 0.99 the mse of RRRE has smaller than the RLSE.

From the mse and MSE results it was
found that the biased RRRE is superior
over the biased RRE when 0<k<0.00704,
and 0<k<0.00153 for p = 0.95 and 0.99
respectively.

Comparison between RLSE and RRRE
When p = 0.95 and 0.99, the restricted
ridge regression parameter k was found
as 0.0068 and 0.0014 respectively, using
the methods suggested in section 3.1 (4).
Using these & values, the RRRE was
obtained.
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[f we consider the above eigenvalues three
values are closed to zero (-4.7994¢-005, -
8.3333e-006, 6.3524¢-005) and two
values are positive when p = 0.95, and
two eigenvalues (-3.5169¢-004, 3.0820¢-
009) arc closed zero and three value are
positive when p = 0.99. So it can be seen
that matrix MSE(RLSE) — MSE(RRRE)

is a non negative definite matrix.

According to the mse and MSE results it
was found that thce biased RRRE is
superior over the unbiascd RLSE when
0<k<0.00704, and 0<4<0.00153 for p =
0.95 and 0.99 respectively.



Comparison between MRRE and
RRRE

When the restrictions are true at two
different levels of multicollinearity p =
0.95 and 0.99, the restricted ridge
regression and modified ridge regression
same biasing parameter & was found as
0.01 and 0.00028 respectively, using the
methods suggested in section 3.1 (5).
Using these & values, the MRRE and
RRRE were obtained.

The mse parameter vector of MRRE
and RRRE

The scalar mean square error of the
parameter vector (mse}) is calculated using
the cxpressions given in section 3 (iv) &
5 (v) and it is given below Table 5.

Ridge Type Estimators in Regression Analysis

From the above eigenvalues, three values
(-9.4351e-004, -2.1975e-009, 5.9518e-
008) are closed to zero and two
eigenvalues positive when p = (.95,
similarly three eigenvalues (-9.0567¢-008,
3.0215e-008, 6.8955¢-008) are closed
zero and two value are positive when p =
0.99. So it can be seen that matrix
MSE(MRRE) — MSE(RRRE) is a non
negative definite matrix.

From the above mse and MSE results it
was found that the biased RRRE is
superior over the biased MRRE when
(<k<0.03673, and 0<k<0.02.8983X10+
for p = 0.95 and 0.99 respectively.

Table 5: The scalar mean square error of MRRE and RRRE

p=095 p =0.98
MRRE RRRE MRRE RRRE
mse 0.04443 0.02713 0.05204 0.02884

RRRE has smaller mse than the MRRE at the same biasing parameter

when = 0.95 and 0.99.

The MSE parameter vector of MRRE
and RRRE .

The biased RRRE 1s preferable to the
biased MRRE, the matrix MSE(MRRE)
— MSE(RRRE) must be non-negative
definite matrix. So we have to consider

the eigenvalues of the matrix
MSE(MRRE) - MSE(RRRE).

The eigenvalues of the matrix
MSE(MRRE) — MSE(RRRE) are:
[-9.4351e-004, -2.1975e-009, 5.9518e¢-
008, 8.4002e-003, 9.8423¢-003] and |[-
9.0567¢-008, 3.0215e-008, 6.8955¢-008,
8.7652e-003, 1.6765e-002) whenp=0.95
and p = 0.99 respectively.

Conclusion
When the independent variables are
correlated among  themselves,

multicollinearity exists and the restrictions
are indeed correct then sclection of the
above estimators are based on different
conditions, and this study reveals the way
to handle the theoretical results in a
practical situation.

The results also demonstrate the suitability
of theoretical results when comparing the
scalar mean square error of the parameter
vector (mse) and matrix mean square error
of the parameter vector (MSE) of the
derived estimators.
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When comparing the estimator at two
different levels of multicillinearity (p =
0.95 and 0.99) and the restrictions indeed
correct the following results werc obtained.

01. The unbiased RLSE 1s better than the
unbiased OLSE,

(2. The biased RRE is better than the
unbiased OLSE when the biasing
parameter Kk ranges between
0<k<0.02832 and 0<k<(.02354 when
p = 0.95 and 0.99 respectively.

03. The biased RRRE is better than the
biascd RRE when the biasing
parameter k ranges between
0<k<0.093 and 0<k<0.295 when p =
0.95 and 0.99 respectively.

04. The unbiased RRRE is better than the
unbiased RLSE when the biasing
parameter Kk ranges between
0<k<0.0074 and 0<k<0.00153 when
p = 0.95 and 0.99 respectively.

03. The hased RRRE is better than the
biasecd MRRE when the biasing
parameter k ranges betwecn
0<k<0.03673 and 0<k<2.8983X10
when p = 0.95 and 0.99 respectively.
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