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ABSTRACT 

Numerical integration plays one of the most important roles in Applied Mathematics. The goal of the 

numerical integration is finding a better approximation value of a definite integral using numerical 

techniques which is highly challengeable. Numerous methods have been proposed in the literature to 

compute numerical integration. In this paper, we propose a better approach using second order 

Taylor polynomial to estimate the definite integrals and compare the accuracy of our method with 

different procedures available in the literature using an example. Also, we drive an upper bound 

estimation for the error. It is observed and illustrated that the proposed study provides more accurate 

results compared to the existing approaches.  
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1. INTRODUCTION 

Numerical integration is a process or technique of how the approximate 

numerical value of a definite integral can be found (Ullah, 2015). It has been 

successfully applied to study problems in fields of Mathematics, Engineering, 

Physical Sciences and Computer Science. The term integral may also denote 

the notion of anti-derivative, a function  𝐹   whose derivative is the given 

function  𝑓.  

Many mathematics researchers already have done broad investigations in the 

field of numerical integration. The purpose of this paper is to give an 

alternative method to find a better approximate value of definite integrals.  

A definite integral is defined as a limit of Riemann sums and any Riemann 

sum could be used as an approximation to the integral (Kaw Autar, Keteltas 

Michael, 2012). 

 

Let us consider a function 𝑓(𝑥) defined on a closed interval [𝑎, 𝑏]. Divide the 

interval [𝑎, 𝑏] into 𝑛 subintervals of equal width ∆𝑥 =  
𝑏−𝑎

𝑛
. 

 

We choose 𝑥0( =  𝑎), 𝑥1, 𝑥2, … … , 𝑥𝑛( =  𝑏)  be the endpoints of these 

subintervals. The definite integral of  𝑓(𝑥) from 𝑎 to 𝑏 is  

∫ 𝑓(𝑥)𝑑𝑥 =  lim
𝑛→∞ 

∑ 𝑓(𝑥𝑖
∗)∆𝑥

𝑛

𝑖=1

𝑏

𝑎

, 
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provided that the limit exists, where 𝑥𝑖
∗ is any point in the 𝑖th subinterval 

[𝑥𝑖−1, 𝑥𝑖],  𝑖 =  1, 2, … …  𝑛 (Stewart, 1999). If the limit exists, f is said to be 

integrable on [𝑎, 𝑏]. 

 

  

2. METHODOLOGY 

 We will define an approximation function  𝑃2(𝑥) on the interval [𝑥𝑖 , 𝑥𝑖+1]  

by, 

𝑃2(𝑥) = 𝑓′′(𝑥𝑖)
(𝑥 −  𝑥𝑖)2

2
 +  𝑓′(𝑥𝑖)(𝑥 −  𝑥𝑖) + 𝑓(𝑥𝑖), (1) 

and hence,  

∫  𝑃2(𝑥)𝑑𝑥 =   ∫ [𝑓′′(𝑥𝑖)
(𝑥 −  𝑥𝑖)2

2
 + 𝑓′(𝑥𝑖)(𝑥 − 𝑥𝑖) + 𝑓(𝑥𝑖)   ]

𝑥𝑖+1

𝑥𝑖

𝑥𝑖+1

𝑥𝑖

𝑑𝑥.  

(Peer, 2015). 

We shall drive a formula for the approximation of the integral  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 using 

midpoints  of the subintervals of the interval [𝑎, 𝑏]. Let  𝑥̅𝑖 be the midpoint of  

[𝑥𝑖 , 𝑥𝑖+1].  Then,   

 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≈ ∑ ∫ [𝑓′′(𝑥̅𝑖)
(𝑥 −  𝑥̅𝑖)2

2
 +  𝑓′(𝑥̅𝑖)(𝑥 −  𝑥̅𝑖) + 𝑓(𝑥̅𝑖)   ]

𝑥𝑖+1

𝑥𝑖

𝑑𝑥

𝑛−1

𝑖=0

 

=  ∑ [
1

2
𝑓′′(𝑥̅𝑖)

(𝑥 −  𝑥̅𝑖)
3

3
+  𝑓′(𝑥̅𝑖)

(𝑥 − 𝑥̅𝑖)
2

2
+ 𝑓(𝑥̅𝑖)𝑥]

𝑥𝑖

𝑥𝑖+1

.

𝑛−1

𝑖=0

 

 

Substituting     𝑥̅𝑖 =  
1

2
(𝑥𝑖+1 +  𝑥𝑖), we get the left hand side is 

= ∑ {
1

6
𝑓′′(𝑥̅𝑖) [ 

1

4
(𝑥𝑖+1 − 𝑥𝑖)3] + 𝑓(𝑥̅𝑖)(𝑥𝑖+1 −  𝑥𝑖) 

 

 

} .

𝑛−1

𝑖=0

 

=  ∑ [
1

24
𝑓′′(𝑥̅𝑖)(∆𝑥)3 + 𝑓(𝑥̅𝑖)(∆𝑥) ]

 

 𝑛−1

𝑖=0

. 

 

Thus, 

 

∫ 𝑓(𝑥)𝑑𝑥 ≈  ∑ [∆𝑥 (
1

24
𝑓′′(𝑥̅𝑖)(∆𝑥)2 + 𝑓(𝑥̅𝑖))]

 

 

.

𝑛−1

𝑖=0

 
𝑏

𝑎
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3. ERROR BOUND 
 

In this section, let us prove two theorems related to the upper bound for 

error that occur due to this approximation. 

 

Theorem 1 Let the given function 𝑓 be continuous over the interval [𝑎, 𝑏] 

and 𝑛 be the number of subintervals which partitions the interval [𝑎, 𝑏].  Let 

𝜉0 ∈  [𝑎, 𝑏] be such that 

|𝑓(𝜉0)| = max
𝑎≤𝜉≤𝑏

|𝑓(𝜉 )|  

Then the error  𝐸𝑇, for the Second Degree Taylor Polynomial Approximation 

of Line Integral satisfies 

|𝐸𝑇| ≤  
(𝑏 − 𝑎)4

24𝑛3
|𝑓(3)(𝜉0)|.  

 

Proof: Let us assume that the function 𝑓 is continuously differentiable (at 

least third derivative exist) on (𝑎, 𝑏). Let 𝐸𝑖 be the error of 𝑖th  interval then total 

error 𝐸𝑇 is sum of 𝐸𝑖’s (Kaw Autar, Keteltas Michael, 2012). 

Thus   

𝐸𝑇 =  ∑ 𝐸𝑖

𝑛−1

𝑖=0

 . 

Let us write       

𝑓(𝑥) = 𝑃2(𝑥) + 𝑅𝑖(𝑥) 

where 𝑅𝑖(𝑥) is the remainder of the second degree Taylor approximation of 𝑓.  

Then, 𝑅𝑖(𝑥) =  
𝑓(3)(𝜉𝑖)

3!
(𝑥 −  𝑥𝑖)3  for some 𝜉𝑖 ∈ [𝑥𝑖 , 𝑥] (Heinbockel, 2004). 

Assume 𝑓′′′  is continuous on [𝑎, 𝑏].  Then by intermediate value theorem 

(Heinbockel, 2004), there exist 𝜉𝑖 ∈ [𝑎, 𝑏] such that, 

 

|𝑓(3)(𝜉0)| = max
𝑎≤𝜉≤𝑏

|𝑓(3)(𝜉 )| ≥ |𝑓(3)(𝜉𝑖)| ,          𝑖 = 0, 1, 2 , … . . , 𝑛 − 1. 

Therefore,     

|𝑅𝑖(𝑥)| ≤
𝑓(3)(𝜉0)

3!
(𝑥 −  𝑥𝑖)3   𝑖 = 0, 1, 2 , … . . , 𝑛 − 1. 

Thus, 

|𝐸𝑖| =  | ∫ [𝑓(𝑥) − 𝑃2(𝑥)]𝑑𝑥

𝑥𝑖+1

𝑥𝑖

| ≤  ∫ |𝑓(𝑥) − 𝑃2(𝑥)|
𝑥𝑖+1

𝑥𝑖

 . 

= ∫ |𝑅𝑖(𝑥)|
𝑥𝑖+1

𝑥𝑖

𝑑𝑥 . 

≤  
|𝑓(3)(𝜉0)|

3!
∫ (𝑥 −  𝑥𝑖)3

𝑥𝑖+1

𝑥𝑖

𝑑𝑥 . 
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          =
|𝑓(3)(𝜉0)|

24
(𝑥𝑖+1 −  𝑥𝑖)4 . 

=
|𝑓(3)(𝜉0)|

24
(∆𝑥)4 . 

This implies that, 

|𝐸𝑖| ≤
|𝑓(3)(𝜉0)|

24
(∆𝑥)4. 

 

 Hence, the total error is  

                              |𝐸𝑇| =  |∑ 𝐸𝑖

𝑛−1

𝑖=0

|. 

                                    ≤ ∑
|𝑓(3)(𝜉0)|

24
(∆𝑥)4.

𝑛−1

𝑖=0

 

                                    ≤
(𝑏 − 𝑎)4

24𝑛3
|𝑓(3)(𝜉0)|. 

|𝐸𝑇| ≤
(𝑏 − 𝑎)4

24𝑛3
|𝑓(3)(𝜉0)|. 

 

Theorem 2 Let  𝑓 ∈ 𝐶3[𝑎, 𝑏]  ℎ =  
(𝑏−𝑎)

𝑛
 , and 𝑥𝑖  =  𝑎 + 𝑖ℎ , for each  𝑖 =

 0,1, … , 𝑛. There exists a 𝜉 ∈ [𝑎, 𝑏] for which the 𝑃2(𝑥)  Approximation Using 

Midpoints for 𝑛 subintervals can be written with its error term as 

∫ 𝑓(𝑥)𝑑𝑥 =  ∑ [ℎ (
1

24
𝑓′′(𝑥̅𝑖)ℎ2 + 𝑓(𝑥̅𝑖))]  +

(𝑏 − 𝑎)

24
ℎ3𝑓(3)(𝜉 )    

 

𝑛−1

𝑖=0

 
𝑏

𝑎

 

 

Proof: 

Let   𝑓 ∈ 𝐶3[𝑎, 𝑏],  ℎ =  
(𝑏−𝑎)

𝑛
,  and   𝑥𝑖  =  𝑎 + 𝑖ℎ , for each  𝑖 =  0,1, … , 𝑛 . There 

exists a 𝜉 ∈ [𝑎, 𝑏] such that 

 

∫ 𝑓(𝑥)𝑑𝑥

𝑏=𝑥𝑛

𝑎=𝑥0

 =  ∑ ∫ 𝑓(𝑥)𝑑𝑥

𝑥𝑖+1

𝑥𝑖

𝑛−1

𝑖=0

= ∑ ∫ (𝑃2 + 𝑅2)𝑑𝑥.

𝑥𝑖+1

𝑥𝑖

𝑛−1

𝑖=0

 

= ∑ ∫ 𝑃2𝑑𝑥

𝑥𝑖+1

𝑥𝑖

𝑛−1

𝑖=0

+ ∑ ∫ 𝑅2𝑑𝑥

𝑥𝑖+1

𝑥𝑖

𝑛−1

𝑖=0

 . 

= ∑ [ℎ (
1

24
𝑓′′(𝑥̅𝑖)ℎ2 + 𝑓(𝑥̅𝑖))] + ∑ ∫

1

6
(𝑥 −  𝑥𝑖)3𝑓(3)(𝜉 )𝑑𝑥

𝑥𝑖+1

𝑥𝑖

𝑛−1

𝑖=0
 

 
𝑛−1

𝑖=0

. 

= ∑ [ℎ (
1

24
𝑓′′(𝑥̅𝑖)ℎ2 + 𝑓(𝑥̅𝑖))] + ∑

1

24
(𝑥 −  𝑥𝑖)4𝑓(3)(𝜉 )

𝑛−1

𝑖=0  

 𝑛−1

𝑖=0

. 
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= ∑ [ℎ (
1

24
𝑓′′(𝑥̅𝑖)ℎ2 + 𝑓(𝑥̅𝑖))] + ∑

1

24
ℎ4𝑓(3)(𝜉 )

𝑛−1

𝑖=0  

 𝑛−1

𝑖=0

. 

= ∑ [ℎ (
1

24
𝑓′′(𝑥̅𝑖)ℎ2 + 𝑓(𝑥̅𝑖))] +

1

24
ℎ4 ∑ 𝑓(3)(𝜉 )

𝑛−1

𝑖=0  

 𝑛−1

𝑖=0

. 

= ∑ [ℎ (
1

24
𝑓′′(𝑥̅𝑖)ℎ2 + 𝑓(𝑥̅𝑖))] +

1

24
ℎ4𝑛𝑓(3)(𝜉 ) 

 

𝑛−1

𝑖=0

. 

= ∑ [ℎ (
1

24
𝑓′′(𝑥̅𝑖)ℎ2 + 𝑓(𝑥̅𝑖))] +

1

24
ℎ3(𝑏 − 𝑎)𝑓(3)(𝜉 ). 

 

𝑛−1

𝑖=0

 

Hence,  

∫ 𝑓(𝑥)𝑑𝑥 =
𝑏

𝑎

∑ [ℎ (
1

24
𝑓′′(𝑥̅𝑖)ℎ2 + 𝑓(𝑥̅𝑖))] +

(𝑏 − 𝑎)

24
ℎ3𝑓(3)(𝜉 ) 

 .

𝑛−1

𝑖=0

 

 

 

4. RESULTS 
 

We show the results of our Propose Approximation Method (P.A.M) compared 

with the Tangent Line Approximation (Tangent), Midpoint Rule (Mid), Trapezoidal 

Rule (Trapz) and Simpson’s Rule (Simps) as 𝑛 increases. The results are tabulated 

in table 4.1 

 

Table 4.1 Comparison of ∫ (3 log 𝑥 + 2𝑥2 − sin 𝑥)𝑑𝑥
2.5

0.1
 for  𝑛 = 5, 𝑛 = 10, 𝑛 = 50 𝑎𝑛𝑑 𝑛 = 100. 

 

 

n - subintervals 

n = 5 n = 10 n = 50 n = 100 

Value Error Value Error Value Error Value Error 

Trapz 8.7744 0.2084 8.9139 0.0689 8.9795 0.0033 8.9820 8.3266e-04 

Simp 3.9809 5.0019 8.9603 0.0225 8.9827 1.3976e-04 8.9828 1.0280e-05 

Mid 9.0533 0.0705 9.0126 0.0298 8.9844 0.0016 8.9832 4.1531e-04 

Tang 10.5761 1.5933 9.2973 0.3145 8.9909 0.0081 8.9847 0.0018 

P.A.M 9.0075 0.0247 8.9868 0.0040 8.9828 1.5196e-05 8.9828 1.0126e-06 
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Figure 4.1 Graph of the approximate error for given in Table 4.1 as the number of 

subintervals 𝑛 increases. 

 

 

Figure 4.2 Graph of the approximate error for P.A.M as the number of subintervals 𝑛 

increases. 
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5. CONCLUSION 

In this paper, we proposed a formula for approximating definite line integrals. Our 

approximation formula gives more efficient results in the point of accuracy compared 

to some of existing methods.  
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