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Introduction 

Exact solutions of the Einstein-Maxwell field 

equations are of crucial importance in modeling 

highly compact stars in general relativity. The 

models generated are used to describe 

relativistic spheres with strong gravitational 

fields as is the case in neutron stars.  It is for this 

reason that many investigators use a variety of 

techniques to attain exact solution. A 

comprehensive list of Einstein-Maxwell 

solutions, satisfying a variety of criteria for 

physical admissibility is provided by Ivanov [3]. 

Mafa Takisa and Maharaj [4] utilized a linear 

equation of state to come up with regular 

solutions of anisotropic spherically symmetric 

charged distributions. Komathiraj and Sharma 

[5, 6] presented a general class of Einstein-

Maxwell solutions in the presence of anisotropic 

stress. Our intention is to achieve simple forms 

for the solutions that are physically reasonable 

and model a charged  

 

anisotropic relativistic sphere. The main 

objective of this work is two-fold. Firstly, we 

seek to model a charged relativistic sphere with 

anisotropic matter which is physically 

acceptable. We require that the gravitational, 

electromagnetic and matter variables are finite, 

continuous and well behaved in the stellar 

interior, the interior metric should match 

smoothly with the exterior Reissner-Nordstrom 

metric, the speed of sound is less than the speed 

of light, and the solution is stable with respect to 

radial perturbations. Secondly, we seek to 

regain an isotropic solution of Einstein 

equations which satisfy the relevant physical 

criteria when the anisotropic factor vanishes. A 

new class of Einstein-Maxwell solutions are 

found that contain familiar models which can be 

regained for different choices of the metric 

function and the electric field or anisotropic 

factor. 

 

Methodology 

In standard coordinates (𝑥𝑎) = (𝑡, 𝑟, 𝜃, 𝜙), the line element of a spherically symmetric space-time 

is given by 

             𝑑𝑠2 = −𝑒2𝜈(𝑟)𝑑𝑡2 + 𝑒2𝜆(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2),                                        (1) 

where  𝜆  and 𝜈 are function of the radial coordinate 𝑟.  

Field Equations    

The Einstein- Maxwell field equations for charged anisotropic fluids (𝐸 ≠ 0,  𝑝𝑟 ≠ 𝑝𝑡) can be 

written for the line element (1) as: 

             
1

𝑟2 (1 − 𝑒−2𝜆) +
2𝜆′

𝑟
𝑒−2𝜆 = 𝜌 +

1

2
𝐸2,                                                   (2.1) 

           −
1

𝑟2 (1 − 𝑒−2𝜆) +
2𝜈′

𝑟
𝑒−2𝜆 = 𝑝𝑟 −

1

2
𝐸2,                                                (2.2)  

                              𝑒−2𝜆 (𝜈′′ + 𝜈′2 +
𝜈′

𝑟
− 𝜈′𝜆′ −

𝜆′

𝑟
) = 𝑝𝑡 +

1

2
𝐸2,                                       (2.3) 
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                       𝑝𝑟 + 𝛥 = 𝑝𝑡,                                                                  (2.4) 

where 𝜌 is the density, 𝑝𝑟 is the radial pressure, 𝑝𝑡  is the tangential pressure, 𝐸 is the electric field 

and ∆ is the anisotropic factor and primes denote the differentiation with respect to the radial 

coordinate 𝑟. The system (2) can be written as an equivalent form by introducing the 

transformation introduced by Durgapal and Bannerji [7]:  

        𝑥 = 𝐶𝑟2  , 𝑍(𝑥) = 𝑒−2𝜆(𝑟) ,  𝐴2𝑦2(𝑥) = 𝑒2𝜈(𝑟),                                    (3) 

where  𝑍, 𝑦 are new metric function and 𝐶 is a real constant. With the help of the transformation 

(3), the system (2) can be replaced as 

                        
1−𝑍

𝑥
− 2𝑍̇ =

𝜌

𝐶
,                                                          (4.1) 

                     
4𝑍𝑦̇

𝑦
+

𝑍−1

𝑥
=

𝑝𝑟

𝐶
,                                                            (4.2) 

   4𝑍𝑥2𝑦̈ + 2𝑥2𝑍̇𝑦̇ + (𝑍̇𝑥 − 𝑍 + 1 −
𝐸2𝑥

𝐶
−

𝛥𝑥

𝐶
) 𝑦 = 0,                             (4.3) 

                           𝑝𝑟 + 𝛥 = 𝑝𝑡,                                                   (4.4) 

where dots denote the differentiation with respect to the variable 𝑥. The system (4) governs the 

gravitational behavior of the charged relativistic sphere with anisotropic stress. The system (4) has 

four equation with seven unknowns. Hence, we have the freedom to choose specific values for 

any three of the variables.  

Integration Procedure 

We solve the Einstein-Maxwell system (4) by making explicit choices for Z,   Δ  and  𝐸. 

               𝑍(𝑥) =
1

1+𝑎𝑥
,      𝛥(𝑥) =

𝑎2𝐶𝛽𝑥

(1+𝑎𝑥)2,           𝐸(𝑥) =
𝑎2𝐶(𝛼−𝛽)𝑥

(1+𝑎𝑥)2 ,                (5) 

where 𝑎, 𝛼 and 𝛽  are real parameters.  The choices are well behaved and physically reasonable. 

Upon substituting the choices (5) in equation (4.3) we obtain 

              4(1 + 𝑎𝑥)𝑦̈ − 2𝑎𝑦̇ + 𝑎2(1 − 𝛼)𝑦 = 0                                         (6) 

which is the second order linear differential equation.  Two categories of solution are possible for 

1 − 𝛼 = 0 and 1 − 𝛼 ≠ 0  

Special case: elementary functions (1 − 𝛼 = 0) 

In this case, the equation (6) can be separable and we obtain the solution  

          𝑦(𝑥) = 𝑐1
(2+2𝑎𝑥)

3
2

3𝑎
+ 𝑐2,                                                                      (7) 

where 𝑐1 and 𝑐2 are arbitrary constants of integration. Hence the complete solution of the Einstein-

Maxwell system (4) is then given by  

        𝑒2𝜈 = 𝐴2 [
𝑐1(2+2𝑎𝑥)

3
2

3𝑎
+ 𝑐2]

2

                                                         (8.1) 

       𝑒2𝜆 = 1 + 𝑎𝑥                                                                      (8.2) 

      𝜌 =
𝑎𝐶(3+𝑎𝑥)

(1+𝑎𝑥)2                                                                  (8.3) 
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         𝑝𝑟 = [
𝑎𝐶(2(−5+𝑎𝑥)√2+2𝑎𝑥𝑐1+3𝑎𝑐2)

(1+𝑎𝑥)(2√2(1+𝑎𝑥)
3
2𝑐1+3𝑎𝑐2)

]                                             (8.4) 

         𝑝𝑡 = [
𝑎2𝐶𝑥𝛽

(1+𝑎𝑥)2 −
𝑎𝐶(2(−5+𝑎𝑥)√2+2𝑎𝑥𝑐1+3𝑎𝑐2)

(1+𝑎𝑥)(2√2(1+𝑎𝑥)
3
2𝑐1+3𝑎𝑐2)

]                                      (8.5)  

The solution (8) is written completely in terms of elementary functions and easy to do the physical 

analysis.  

General case: Bessel functions 

With, 1 − 𝛼 ≠ 0 equation (6) is difficult to solve. Consequently, we introduce the transformation 

                                           𝑋 = 1 + 𝑎𝑥                                                                       (9.1) 

                   𝑦(𝑥) = 𝑌(𝑋)                                                                     (9.2) 

 With the help of (9), the differential equation (6) becomes 

                4X
d2Y

𝑑𝑋2 − 2
𝑑𝑌

𝑑𝑋
+ (1 − 𝛼)𝑌 = 0                                              (10) 

We now introduce a new function 𝑢(𝑋) such that 

    𝑌(𝑋) = 𝑢(𝑋)𝑋𝑚                                                                         (11) 

where 𝑚 is a constant. Substitution of (11) in equation (10) gives 

                4X2 𝑑2𝑢

𝑑𝑋2 + X(8𝑚 − 2)
𝑑𝑢

𝑑𝑋
+ [4𝑚2 − 6𝑚 + (1 − 𝛼)𝑋]𝑢            (12) 

It is convenient at this point to introduce the new variable 𝑤 as follows: 

           𝑤 = 𝑋𝛾                                                                          (13) 

Upon substituting 𝑤 in (12), we obtain 

4𝑤2𝛾2 𝑑2𝑢

𝑑𝑤2 + 2𝑤𝛾(2𝛾 + 4𝑚 − 3)
𝑑𝑢

𝑑𝑤
+ [4𝑚2 − 6𝑚 + (1 − 𝛼)𝑤

1

𝛾 ] 𝑢 = 0              (14) 

We observe that there is considerable simplification if we make the choice 𝛾 =
1

2
   

and 𝑚 =
3

4
. Then the equation (14) becomes  

                  𝑤2 𝑑2𝑢

𝑑𝑤2 + 𝑤
𝑑𝑢

𝑑𝑤
+ [−

9

4
+ (1 − 𝛼)𝑤2] 𝑢 = 0                               (15) 

Consequently, we introduce the transformation  

    (1 − 𝛼)
1

2𝑤 = 𝑣                                                                    (16) 

With this transformation the equation (15) becomes 

       𝑣2 𝑑2𝑢

𝑑𝑣2 + 𝑣
𝑑𝑢

𝑑𝑣
+ [𝑣2 − (

3

2
)

2

] 𝑢 = 0                                             (17) 

which is a Bessel differential equation of order 3/2 in terms of the new dependent variable  𝑢 and 

independent variable 𝑣.  With the assistance of Mathematica, the solution of equation (17) can be 

written as   

      𝑢(𝑣) = − [
√

2

𝜋
((𝑣𝑐1+𝑐2) cos 𝑣+(−𝑐1+𝑣𝑐2) sin 𝑣)

𝑣
3
2

]                                     (18)  

The expression given in (18) in terms of the original variable 𝑥 becomes 

y(𝑥) = −√
2

𝜋
(1 + 𝑎𝑥)

3

4 [
(√(1+𝑎𝑥)(1−𝛼)𝐶1+𝐶2) cos √(1+𝑎𝑥)(1−𝛼)+(√(1+𝑎𝑥)(1−𝛼)𝐶2−𝐶1) sin √(1+𝑎𝑥)(1−𝛼)

(√(1+𝑎𝑥)(1−𝛼))

3
2

]                                 

                                                                            (19) 
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Hence the complete solution of the Einstein-Maxwell system (4) is then given by 

     𝑒2𝜈(𝑟) = 𝐴2𝑦2,    𝑒2𝜆(𝑟) = 1 + 𝑎𝑥,   𝜌 =
𝑎𝐶(3+𝑎𝑥)

(1+𝑎𝑥)2 ,             𝑝𝑟 =
4𝐶

(1+𝑎𝑥)

𝑦̇

𝑦
−

𝑎𝐶

1+𝑎𝑥
 

        𝑝𝑡 =
4𝐶

(1+𝑎𝑥)

𝑦̇

𝑦
−

𝑎𝐶

1+𝑎𝑥
+

𝐶𝑎2𝛽𝑥

(1+𝑎𝑥)2,      𝐸2 =
𝐶𝑎2(𝛼−𝛽)𝑥

(1+𝑎𝑥)2 ,         𝛥 =
𝐶𝑎2𝛽𝑥

(1+𝑎𝑥)2            (20) 

Where  y is given by (19).  It is remarkable that these solutions are expressed completely as 

elementary functions. 

 

Results and discussion 

From our general class of solutions (20) and (8) 

found above it is possible to generate particular 

solutions found previously. Consider one 

example with 𝛽 = 0 and 𝑎 = 1. Then (19) 

becomes the model of Hansraj and Maharaj 

[2]. Further setting 𝛼 = 0 (19) becomes Finch 

and Skea [1] neutron star model. Also, it is 

possible to derive many models found in the 

past including the solution of Mafa Takisa and 

Maharaj [4] from our general solution (20).  

Conclusion 

Our purpose in this work was to find new 

physically reasonable exact solutions to the 

Einstein-Maxwell systems in the presence of 

anisotropic stress. We make the physical 

reasonable choices for one of the gravitational 

potentials, anisotropy factor and the electric 

field. We showed that the underlying equation 

was a Bessel equation which admits solutions 

in terms of elementary functions. We present a 

class of new solution to the Einstein-Maxwell 

system and many solutions found previously 

are in our general class of solution.  
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