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Abstract: Sugarcane white leaf phytoplasma (white leaf disease) in sugarcane crops is caused by a
phytoplasma transmitted by leafhopper vectors. White leaf disease (WLD) occurs predominantly in
some Asian countries and is a devastating global threat to sugarcane industries, especially Sri Lanka.
Therefore, a feasible and an effective approach to precisely monitoring WLD infection is important,
especially at the early pre-visual stage. This work presents the first approach on the preliminary
detection of sugarcane WLD by using high-resolution multispectral sensors mounted on small
unmanned aerial vehicles (UAVs) and supervised machine learning classifiers. The detection pipeline
discussed in this paper was validated in a sugarcane field located in Gal-Oya Plantation, Hingurana,
Sri Lanka. The pixelwise segmented samples were classified as ground, shadow, healthy plant, early
symptom, and severe symptom. Four ML algorithms, namely XGBoost (XGB), random forest (RF),
decision tree (DT), and K-nearest neighbors (KNN), were implemented along with different python
libraries, vegetation indices (VIs), and five spectral bands to detect the WLD in the sugarcane field.
The accuracy rate of 94% was attained in the XGB, RF, and KNN to detect WLD in the field. The
top three vegetation indices (VIs) for separating healthy and infected sugarcane crops are modified
soil-adjusted vegetation index (MSAVI), normalized difference vegetation index (NDVI), and excess
green (ExG) in XGB, RF, and DT, while the best spectral band is red in XGB and RF and green in
DT. The results revealed that this technology provides a dependable, more direct, cost-effective, and
quick method for detecting WLD.

Keywords: white leaf disease; sugarcane; UAV multispectral images; machine learning; precision
agriculture

1. Introduction

Sugarcane (Saccharum officinarum) is a tropical plant, and it is the most important sugar
extracting crop in Sri Lanka [1,2]. Sugarcane white leaf disease (WLD) is one of the most
economically important diseases in Sri Lanka’s sugarcane industry [3], and WLD severely
progresses in ratoon sugarcane, which ultimately affects yield [4]. WLD is caused by a
phytoplasma, an obligate plant parasite that attacks plant phloem tissue. It is transmitted
through leafhopper insect vectors [3–5]. Cream-white stripes are developed parallel to
the midrib of sugarcane leaves, eventually covering the entire leaf in the infected crops.
Other symptoms of WLD include stunted stalks, the absence of lateral shoots on the upper
portion of infected stalks, and eventual plant death. Currently, there are no sugarcane
varieties found to be resistant to WLD in Sri Lanka [4]. As a preventive approach, growers
still follow traditional scouting methods all over the field, monitoring disease symptoms
with human eyes and burning infected crops on the spot. However, this method requires
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a significant amount of time to watch the entire field to identify infected areas in large
field sugarcane plantations. Thus, precision agriculture technologies aided with modern
computational machine learning approaches may provide an effective way of detecting
sugarcane WLD on-field, an alternative to human-based methods.

Precision agriculture is a smart farming method that uses current technologies to
examine and manage changes within an agricultural field to maximize cost-effectiveness,
sustainability, and environmental protection [6–8]. Precision agriculture is crucial to seeking
low-input, high-efficiency, and sustainable methods in agricultural industries [9]. Recent
improvements in the application of UAV-based remote sensing in crop production have
proved crucial in improving crop productivity [10]. Remote sensing for precision agricul-
ture is based on the indirect detection of soil and crop reflected radiation in an agricultural
field [11]. This approach is well suited for monitoring plant stress and disease since it
provides multitemporal and multispectral data. UAVs are increasingly used for agriculture
to collect high-resolution images and videos for post-processing. Artificial intelligent (AI)
approaches are used to process these UAV images for planning, navigation, and georef-
erencing, as well as for a variety of agricultural applications [12]. UAVs and advanced
computational ML techniques are increasingly used to forecast and improve yield in various
farming industries, including sugarcane [10].

León-Rueda et al. [13] examined the use of multispectral cameras mounted on UAVs
to classify commercial potato vascular wilt using supervised random forest classification.
Su et al. [14] investigated the yellow rust disease in winter wheat using a multispec-
tral camera by selecting spectral bands and SVI with a high discriminating capability.
Albetis et al. [15] assessed the possibility of distinguishing Flavescence dorée symptoms
using UAV multispectral imaging. Gomez Selvaraj et al. [16] examined the potential of
aerial imagery and machine learning approaches for disease identification in bananas by
classifying and localizing bananas in mixed-complex African environments using pixel-
based classifications and machine learning models. Lan et al. [17] assessed the feasibility of
large-area identification of citrus Huanglongbing using remote sensing and committed to
improving the accuracy of detection using numerous ML techniques, including support
vector machine (SVM), K-nearest neighbor (KNN), and logistic regression (LR). Table 1
represents the application of UAVs for disease management in precision agriculture, and
Table 2 shows the use of UAVs for pest and disease control in the sugarcane sector.

ML algorithms have been used to monitor the crop status in many remote sensing
applications in agriculture [30–33]. ML methods attempt to establish a relationship between
crop parameters to forecast crop production [34]. Artificial neural networks (ANN), random
forests (RF), SVM, and decision trees (DT) are relevant algorithms in remote sensing
applications [35].

Saini and Ghosh [36] utilized XGBoost (XGB), stochastic gradient boosting (SGB), RF,
and SVM for rice mapping crops in India to evaluate the efficacy of ensemble methods.
Huang et al. [37] used VIs generated from canopy level hyperspectral scans to examine
the utility of the RF technique in combination with the XGB approach for detecting wheat
stripe rust early and mid-term. Compared to typical machine learning approaches, the
XGB, as a unique ML methodology, can reduce model overfitting and computing effort [37].
Tageldin et al. [38] used the XGB method to predict the occurrence of cotton leaf miner
infestation with an accuracy of 84 percent, which was greater than the findings obtained
using algorithms, such as RF and logistic regression. The RF non-parametric classifier is
an ensemble-based machine learning technique that combines the predictions of many
decision tree classifiers using a voting strategy [39]. Santoso et al. [40] assessed the RF
model’s potential for predicting BSR disease in oil palm fields and produced BSR dis-
ease distribution maps. With the cascade parallel random forest (CPRF) algorithm and a
20-year examination of pertinent data, Zhang [41] identified the pattern of rice diseases.
Samajpati and Degadwala [42] experimented with identifying apple scab, apple rot, and
apple blotch utilizing the RF algorithm. Some of the researchers suggested a model that
employs a decision tree to identify and categorize leaf disease and boosts its detection
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accuracy while reducing detection time compared to the current system using DT mod-
els [43–45]. K-nearest neighbor (KNN) is a prevalent machine learning algorithm that
performs well in supervised learning scenarios and simple recognition issues [46]. Vaishn-
nave et al. [47] developed the ML model by KNN algorithm to detect the groundnut leaf
disease, and Krithika and Grace [48] used a KNN classifier to identify the grape leaf diseases.
Kapil et al. [49] developed a system for recognizing cotton leaf disease by the
KNN algorithm.

Table 1. Application of UAVs for disease management in precision agriculture.

No Crop Disease Location UAV Sensor Reference

01 Citrus Citrus greening Iran Micasense
RedEdge camera [18]

02 Cotton Leaf Blight Disease Brazil
Multispectral

TetraCam ADC
camera

[19]

03 Maize Maize streak virus
disease Zimbabwe

Parrot Sequoia
multispectral

camera
[20]

04 Vineyard Vine disease France Survey2 sensor [21]

05 Cotton Root rot disease USA Micasense
RedEdge camera [22]

06 Vineyards Grapevine disease France Micasense
RedEdge camera [15]

07 Wheat Helminthosporium
leaf blotch (HLB) China Phantom 4 RGB

camera [23]

08 Soybean Soybean leaf
diseases Brazil Phantom 3 Sony

EXMOR sensor [24]

09 Vine Esca disease France RGB camera [25]

10 Wheat Fusarium Head
Blight China Hyperspectral

camera [26]

Table 2. Use of UAVs for pest and disease control in the sugarcane sector.

No Purpose UAV Type/Sensor Type/Sprayer Type Location Reference

01 Detection of WLD Six rotors, VESPA HEX 650
MicaSense

Multispectral
camera

Thailand [5]

02 Pesticide
application

Quadrotor: Jimu 3WWDZ-1013 with Centrifugal mist sprayers China [2]
03 Multi-rotor UAV (four-rotor electronic UAV, 3WWDZ-10A) China [27]
04 A TY-800 single-rotor UAV China [28]

05 Monitoring if
Mosaic Virus SX8 multirotor UAS with eight propellers

Hyperspectral
camera model

DT-0014
Brazil [29]

Vegetation indices are numerical metrics used in remote sensing applications to assess
the differentiation of vegetation cover, vigor, and growth dynamics. A sum, difference,
ratio, or other linear combination of reflectance factor or radiance measurements from
two or more wavelength intervals normally constitutes the vegetation index. It is utilized
to increase the reliability of regional and temporal comparisons of terrestrial photosyn-
thetic activity and canopy structure variation by enhancing the contribution of vegeta-
tion features [50]. A VI’s ability to detect WLD-infected sugarcane via image processing
from a multispectral camera placed on a UAV was examined by Sanseechan et al. [5].
Moriya et al. [29] developed a method for accurately identifying and mapping mosaic virus
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in sugarcane using aerial surveys conducted with a UAV equipped with a hyperspectral
camera. A few research studies have been undertaken using ML techniques over UAV
multispectral images to identify the other sugarcane diseases, and no research studies
have been undertaken related to detection of WLD using ML models and high-resolution
UAV imagery in sugarcane crops. Therefore, this study proposes developing a method
for identifying sugarcane WLD by combining UAV technology with high-resolution mul-
tispectral cameras and multiple machine learning classification algorithms. There were
two sub-goals: (1) to correlate the VIs with the fluctuation in severity level of WLD in the
sugarcane field; and (2) to evaluate the detection performance in WLD severity levels using
various ML approaches.

UAV-based remote sensing can assist farmers in analyzing crop health and manage-
ment in precision agriculture. Early detection of WLD in Sri Lankan sugarcane fields
will be used to implement effective management measures throughout the crop’s early
phases. This method will aid in disease management in sugarcane farms by eliminating the
requirement for conventional methods [51]. Ultimately, it will help farmers and the cane
industry in Sri Lanka recover economically. However, the commercial application of UAVs
and artificial intelligence algorithms in sugarcane sectors has been limited due to various
variables, including technology, UAV legislation, and cost [51].

2. Methodology
2.1. Process Pipeline

As depicted in Figure 1, a process pipeline with four key components was developed:
acquisition, preprocessing, training, and prediction. Images are downloaded, orthorectified,
mosaicked, and preprocessed to extract samples with crucial features and then we labelled
them. The data were then supplied to supervised machine learning classifiers, trained, and
optimized for detection. The complete orthorectified data were then analyzed to determine
where WLD crops would grow in the field. Images were collected, orthorectified, and
preprocessed to extract samples with essential characteristics and then we labelled them.
The data were subsequently sent to supervised machine learning classifiers that had been
trained and optimized for detection.
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2.2. Study Site

The study was conducted in a 1.24-hectare sugarcane field in Gal-Oya Plantation,
Hingurana, Sri Lanka (7◦16′42.94′′ N, 81◦42′25.53′′ E) during the sugarcane growing season
of October 2021 (Figure 2). For this experiment, two-month-old sugarcane plants with an
average height of 1.2 m were chosen.
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Figure 2. Study area.

Disease plants were randomly sampled throughout the field for the levels of disease
severities followed by the natural disease occurrence pattern in the field. Field agronomists
confirmed the following during this experiment: (1) Ridges and furrows irrigation method
was used in the field, and there was no water stress to the plants; (2) the entire experimental
site had a uniform soil type (sandy to clay loam soils); (3) fertilizers were applied in the
recommended level to the entire experimental field, and there was no fertilizer stress to
the plants; and (4) WLD disease was transmitted by insect vector and was not associated
with soil or water, and this symptom was developed only by WLD. Due to the above four
reasons, it was not necessary to design the experiment for block design in this site.

2.3. Ground Truth Data Collection

Experts visually inspected and labelled diseased and healthy plants as ground truth
before image acquisition to train and test the classifier [39]. The sugarcane plants (a total
of 150 plants) were classified into three types, healthy plants (50 plants), early symptoms
plants (50 plants), and severe symptoms plants (50 plants) by using different color tags
such as white tag, yellow tag, and red tag, respectively, that were installed in the training
site manually as shown in Figure 3. A total of 90 plants were classified into three types,
healthy plants (30 plants), early symptoms plants (30 plants), and severe symptoms plants
(30 plants), by using color tags in the testing site for validation. Early symptom plants
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were characterized by the youngest leaves appearing white with older leaves remaining
green. Pure white leaves classify the severe plant symptoms in most leaves with stunted
growth [52].
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Figure 3. Ground truth classification of sugarcane crops in the field.

2.4. UAV Platform

DJI P4 multispectral UAV was used to conduct the experiment in the sugarcane
field. DJI P4 Multispectral is a fully integrated UAV platform, and it can complete the
data collection task independently without the help of other aircraft. It has a take-off
weight of 1487 g, and the average flight time is 27 min. The P4 Multispectral imaging
system contains six cameras with 1/2.9-inch CMOS sensors, including an RGB camera
that produces images in the JPEG format and a multispectral camera array containing
five cameras (Figure 4b) that produce multispectral images in the TIFF format. It uses a
global shutter to ensure performance. The five cameras in the multispectral camera array
can capture photos in the following imaging bands: Blue (B): 450 nm ± 16 nm; green (G):
560 nm± 16 nm; red (R): 650 nm± 16 nm; red edge (RE): 730 nm± 16 nm; and near-infrared
(NIR):
840 nm ± 26 nm [53] without zoomable. Table 3 shows the information on central wave-
length and wavelength width for DJI P4 multispectral camera [53].
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Table 3. Spectral band information for the DJI P4 Multispectral.

Band Central Wavelength (nm) Wavelength Width (nm)

Blue 450 32
Green 560 32
Red 650 32

Red edge 730 32
Near-infrared 840 32

Table 4 shows the camera specifications of the DJI P4 Multispectral. The remote
controller features, as shown in the Figure 4a, of DJI’s long-range transmission technology
can control the aircraft and the gimbal cameras at a maximum transmission range of 4.3 mi
(7 km). It is possible to connect an iPad to the remote controller via the USB port to use the
DJI GS Pro app to plan and perform missions. It can also be used to export the captured
images for analysis and create multispectral maps [53].

Table 4. Camera specification of the DJI P4 Multispectral.

Camera Component Specifications

Sensors
Six 1/2.9” CMOS, including one RGB sensor for visible light

imaging and five monochrome sensors for multispectral imaging.
Each Sensor: Effective pixels 2.08 MP (2.12 MP in total)

Filters
Blue (B): 450 nm ± 16 nm; Green (G): 560 nm ± 16 nm; Red (R):

650 nm ± 16 nm; Red edge (RE): 730 nm ± 16 nm; Near-infrared
(NIR): 840 nm ± 26 nm

Lenses FOV (Field of View): 62.7◦ Focal Length: 5.74 mm (35 mm format
equivalent: 40 mm), autofocus set at ∞ Aperture: f/2.2

Monochrome Sensor Gain 1–8x

Electronic Global Shutter 1/100–1/20,000 s (visible light imaging); 1/100–1/10,000 s
(multispectral imaging)

The RTK module is integrated directly into the Phantom 4 RTK, providing real-time,
centimeter-level positioning data for improved absolute accuracy on image metadata. The
GSD for the P4 multispectral is (H/18.9) cm/pixel. Height can be calculated based on the
accuracy needed for flight mission.

2.5. Collection of Multispectral UAV Images

A UAV flying operation was undertaken during the growing season utilizing a DJI
P4 multispectral system on a sunny day between 11:00 a.m. and 12:00 p.m. The visible-to-
near-infrared spectral range of the DJI P4 multispectral camera comprises five bands with
wavelengths of 450.0 nm, 560.0 nm, 650.0 nm, 730.0 nm, and 840.0 nm, respectively (blue,
green, red, red edge, and near-infrared). The flying altitude was 20 m and maintained by
a barometer present in the UAV. DJI P4 multispectral UAV uses barometer to maintain
the altitude. It uses mean barometer to measure air pressure and establish and maintain
a stable altitude during flying. Barometer can rapidly measure changes in atmospheric
pressure to help ensure the UAV is flying at the appropriate elevation. Additionally, the
experiment site is in the level surface. Therefore, it was easy to maintain the height in the
same altitude. The size of pixels in terms of real-world dimensions for this experiment was
1.1 cm/pixel.

The UAV was flown at different heights, 10 m, 15 m, 20 m, and 25 m, before conducting
the flight mission to select the suitable height needed for labelling the WLD over the
multispectral orthomosaic image. The flight campaign at 15 m was selected as captured
data, which provided the best outcomes in terms of WLD detection, UAV endurance,
and battery capacity. The speed of the UAV and front and side overlap of images were
1.4 m per second and 75% and 65%, respectively. The experiment was conducted between
11:00 a.m. and 12:00 p.m. because plant leaves are erect and at maximum transpiration
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time (active time for plants) at the time of image capture. Early morning and late afternoon
or evening are not suitable for conducting this experiment due to dew on the plants in
the early morning and dropping of leaves in the late afternoon or evening. Additionally,
this will have not an effect on the VIs values. Therefore, the time of image capture is very
important for developing the accurate WLD detection models.

2.6. Software and Python Libraries

This research was conducted using several software tools and python libraries. Agisoft
Metashape (Version 1.6.6; Agisoft LLC, Petersburg, Russia) was used to process, filter, and
orthorectify 5600 raw photos for multispectral image analysis. A set of images from
cropped regions was extracted and then labelled using QGIS (Version 3.2.0; Open-Source
Geospatial Foundation, Chicago, IL, USA). Visual Studio Code (VS Code) 1.70.0 was used
as source-code editor to develop the different ML algorithms using the Python 3.8.10
programming language. Several libraries were used for data manipulation and machine
learning, including Geospatial Data Abstraction Library (GDAL) 3.0.2, eXtreme Gradient
Boosting (XGBoost) 1.5.0, Scikit-learn 0.24.2, OpenCV 4.6.0.66, and Matplotlib 3.4.3.

2.7. Data Labelling

A mask for each image was generated by assigning integer values for every highlighted
pixel to perform image labelling. The integer values were set as follows: 1 = ground cover;
2 = shadow; 3 = healthy; 4 = early symptoms; and 5 = severe WLD by using QGIS. Each
bright colored pixel was filtered from an orthomosaic image. A new shapefile was created
to draw the polygons on the multispectral orthomosaic image to label each class by using
toggle editing and adding polygon tools in the QGIS. In total, 471,748 pixels were labelled
from all the classes based on the ground truth information by observing the different color
tags in the orthomosaic image as shown in Figure 3. The edges of the plant leaves were not
labelled to prevent the misclassification of mixed pixels. All the selected 150 plants’ leaves
were labelled by using the polygon tool in QGIS as shown in Figure 5. Ground truth shape
files (.shp) were exported for training the different ML models. Shape region in the shape
file was converted into labelled pixels using translation techniques before training the data.
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2.8. Statistical Analysis for Algorithm Development

Statistical analysis was conducted using multicollinearity testing and normality testing
to select the best fit ML models before tuning them with labelled data. From an initial list
of twenty VIs, only six of them were chosen to train the models via multicollinearity testing
via variable inflation factors (VIF) to avoid model overfitting. Finally, eleven input features
(five bands and six VIs) were used to develop the ML models to detect WLD. Variance
inflation factor was used to measure how much the variance of the estimated regression
coefficient is inflated if the independent variables are correlated [54]. VIF is calculated as
shown in Equation (1).

VIF =
1

1− Ri
2 =

1
Tolerance

. (1)

where Ri
2 represents the unadjusted coefficient of determination for regressing the i-th

independent variable on the remaining ones, and tolerance is simply the inverse of the VIF.
The lower the tolerance, the more likely is the multicollinearity among the variables. The
value of VIF =1 indicates that the independent variables are not correlated to each other.
If the value of VIF is 1< VIF < 5, it specifies that the variables are moderately correlated
to each other. The challenging value of VIF is between 5 to 10 as it specifies the highly
correlated variables. If VIF≥ 5 to 10, there will be multicollinearity among the predictors in
the regression model, and VIF > 10 indicates the regression coefficients are feebly estimated
with the presence of multicollinearity [54].

Based on the literature review [54–56], input features, which are not correlated among
all input features and moderately correlated among all input features, such as blue, green,
red, red edge, NIR, normalized difference vegetation index (NDVI), green normalized
difference vegetation index (GNDVI), normalized difference red edge index (NDRE), green
chlorophyll index (GCI), modified soil-adjusted vegetation index (MSAVI), and excess green
(ExG), were selected to train the models, as shown in the Table 5. Highly correlated in-
put variables, such as leaf chlorophyll index (LCI), difference vegetation index (DVI), ratio
vegetation index (RVI), enhanced vegetation index (EVI), triangular vegetation index (TVI),
green difference vegetation index (GDVI), normalized green red difference index (NGRDI),
atmospherically resistant vegetation index (ARVI), structure insensitive pigment index (SIPI),
green optimized soil adjusted vegetation index (GOSAVI), excess red (ExR), excess green red
(ExGR), normalized difference index (NDI), and simple ratio index (SRI), were not selected to
train the ML models due to higher VIF that range from around 7 to 22 [54].

Table 5. VIF values for selected VIs.

Id Input Variables VIF

0 Blue 1.2271
1 Green 1.7911
2 Red 1.1987
3 Red Edge 1.1243
4 NIR 1.5213
5 NDVI 4.0372
6 GNDVI 3.4279
7 NDRE 1.0976
8 GCI 4.4612
9 MSAVI 1.0121
10 ExG 3.0231

A second statistical experiment of normality test was conducted to determine whether
sample data have been drawn from a normally distributed population for the development
of ML models. Different normality tests, namely quantile-quantile (Q-Q) plot, were con-
ducted to confirm the normal distribution of features. Figure 6 shows the Q-Q plot confirm-
ing that the data were adequately close to the theoretical reference line, representing a sound
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model fit. The python libraries, such as matplotlib, numpy, statsmodels.graphics.gofplots,
and scipy.stats, were used to develop the Q-Q plot.

Drones 2022, 6, x FOR PEER REVIEW 10 of 24 
 

excess red (ExR), excess green red (ExGR), normalized difference index (NDI), and simple 

ratio index (SRI), were not selected to train the ML models due to higher VIF that range 

from around 7 to 22 [54]. 

Table 5. VIF values for selected VIs. 

Id Input Variables VIF 

0 Blue 1.2271 

1 Green 1.7911 

2 Red 1.1987 

3 Red Edge 1.1243 

4 NIR 1.5213 

5 NDVI 4.0372 

6 GNDVI 3.4279 

7 NDRE 1.0976 

8 GCI 4.4612 

9 MSAVI 1.0121 

10 ExG 3.0231 

A second statistical experiment of normality test was conducted to determine 

whether sample data have been drawn from a normally distributed population for the 

development of ML models. Different normality tests, namely quantile-quantile (Q-Q) 

plot, were conducted to confirm the normal distribution of features. Figure 6 shows the 

Q-Q plot confirming that the data were adequately close to the theoretical reference line, 

representing a sound model fit. The python libraries, such as matplotlib, numpy, stats-

models.graphics.gofplots, and scipy.stats, were used to develop the Q-Q plot. 

 

Figure 6. Normal Q-Q plot for the observed sample against theoretical quantiles. 

2.9. Development of Classification Algorithms and Prediction 

The development of algorithms includes multiple steps to load, preprocess, fit the 

classifier to the data, and prediction. The processing phase converts the read data into a 

collection of features, which are then analyzed by the classifier as shown in Table 6. An 

orthomosaic multispectral raster was loaded into the algorithm to calculate spectral in-

dexes and improve the detection rates as mentioned in step 5. For this approach, the VIs, 

such as ExG, GCI, MSAVI, GNDVI, NDRE, and NDVI, are estimated (step 6) as shown in 

Table 7. All five bands in the multispectral raster, as well as in the estimated vegetation 

spectral indexes, are denominated as input features (step 7). 

  

Figure 6. Normal Q-Q plot for the observed sample against theoretical quantiles.

2.9. Development of Classification Algorithms and Prediction

The development of algorithms includes multiple steps to load, preprocess, fit the
classifier to the data, and prediction. The processing phase converts the read data into a
collection of features, which are then analyzed by the classifier as shown in Table 6. An
orthomosaic multispectral raster was loaded into the algorithm to calculate spectral indexes
and improve the detection rates as mentioned in step 5. For this approach, the VIs, such as
ExG, GCI, MSAVI, GNDVI, NDRE, and NDVI, are estimated (step 6) as shown in Table 7.
All five bands in the multispectral raster, as well as in the estimated vegetation spectral
indexes, are denominated as input features (step 7).

Table 6. Steps in algorithms (XGB, RF, DT, and KNN) development-detection and segmentation of
WLD using multispectral imagery.

Step 1-import required modules and libraries.
Step 2-Load input file (Multispectral images as .tiff) and ground truth file (Ground truth shape
file as .shp).
Step 3-Extract the bands (features) from input file (blue, green, red, red edge, and NIR) through
GDAL library.
Step 4-Define the wavelength of each band based on the DJI P4 camera (wavelengths = [475.0,
560.0, 668.0, 717.0, 840.0]).
Step 5-Store the bands in the variable (V) as five input features.
Step 6-Estimation of selected VIs (Additional input features-six).
Step 7-Append the VIs and five bands and store in the same variable (V)-Total-11 input features.
Step 8-Search for the number of classes of the labelled data.
Step 9-Filter unlabelled data from the source image and store their values in the ‘X’ features
variable and store in the array (x_array).
Step 10-Select only labelled data from the labelled image and store their values in the ‘y’ labels
variable and store in the array (y_array).
Step 11-Splitting the dataset into the ‘Training’ set (75%) and ‘Test’ set (25%)
Step 12-Data normalization (Feature Scaling) of the ‘X’ features matrix for Euclidean distance
Step 13-Fitting Classifier (XGB, RF, DT, and KNN) to the training set (11 input features)
Step 14-manual hyper-parameter tuning based on the algorithms as shown in Table 7.
Step 15-Applying k-fold Cross Validation
Step 16-Export and save the model.
Step 17-Predict the values for each sample in x-array
Step 18-Export the output file as tagged image file (TIF) format.
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Table 7. Estimation of VIs.

No Vegetation Indices Formula References

01
Normalized

Difference Vegetation
Index (NDVI)

NDVI = NIR − R
NIR + R [57]

02
Green Normalized

Difference Vegetation
Index (GNDVI)

GNDVI = NIR − G
NIR + G [58–60]

03
Normalized

Difference Red Edge
Index (NDRE)

NDRE =
NIR − Red Edge
NIR + Red Edge

[61–63]

04 Green Chlorophyll
Index (GCI) GCI = NIR

G − 1 [64,65]

05

Modified
Soil-Adjusted

Vegetation Index
(MSAVI)

MASVI =
(2 ∗ NIR + 1 − sqrt((2 ∗ NIR + 1)2 − 8 ∗ (NIR − R)))

2
[66]

06 Excess Green (ExG) ExG = 2G − R − B
R + G + B [25]

The labelled regions from the ground-based assessments are exported from QGIS and
loaded into an array (y_array) (step 10). In all, 471,748 pixelwise samples were filtered and
randomly divided into a training array (75%) and a testing array (25%) (step 11). In step
13, data are processed into different ML classifiers. This study employed four (04) machine
learning regression methods, XGB, RF, DT, and KNN, to detect the sugarcane WLD from
multispectral UAV images. Finally, the fitted model is validated using k-fold cross-validation
(step 15). In the prediction stage, unlabelled pixels are processed in the optimized classifier, and
their values are displayed in the same 2D spatial image from the orthorectified multispectral
raster (step 17). Each image’s identified pixels are then colored differently and exported in TIF
format, which can be read with geographic information system (GIS) platforms (step 18). The
best performant model for identifying WLD in the sugarcane field was selected by comparing
performance metrics, such as precision, recall, f1 score, and accuracy. Further details on the
calculation of these metrics can be found in Section 3.4.

2.10. Validation

For validation, 90 sugarcane plants were classified into three types, healthy plants
(30 plants), early symptoms plants (30 plants), and severe symptoms plants (30 plants), by
using different color tags, such as white tag, yellow tag, and red tag, respectively, as shown
in Figure 3, in the testing site. The labelling was performed the same as in the training site
that is mentioned in the Section 2.6. Then, a python script was developed to validate the
validation accuracy in the testing site. Finally, an input file (multispectral images as .tiff
for testing site), a ground truth file (ground truth shape file as .shp for testing site), and a
best model file (as .json exported from training) were loaded into different algorithms for
estimating the validation accuracy.

3. Results
3.1. Estimation of Vegetation Indices

Leaf pigments’ absorption characteristics govern spectral reflectance. Therefore, any
variation in pigment concentrations correlates closely with the health and production of
the plant [20]. Six (06) VIs were selected based on the results from multicollinearity testing
and variable optimization techniques [51,67] to develop the different ML models to detect
the WLD, as shown in Figure 7 and Table 8. To construct the various VIs, reflectance
values in multispectral bands corresponding to blue (B): 450 nm ± 16 nm; green (G):
560 nm ± 16 nm; red (R): 650 nm ± 16 nm; red edge (RE): 730 nm ± 16 nm; near-infrared
(NIR): 840 nm ± 26 nm were utilized in this study.
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Table 8. Algorithms and their hyper-parameters and specific libraries.

Algorithms Hyper-Parameters Specific Libraries

XGB estimators = 100 learning rate = 0.1
maximum depth = 3

xgboost (import
XGBClassifier)

RF
max_depth = 20 random_state = 10

n_estimators’: 100min_samples_split
= 2 min_samples_leaf = 1

sklearn.ensemble (import
Random Forest Classifier)

DT
max_depth = 20 random_state = 10

min_samples_split = 2
min_samples_leaf = 1

sklearn.tree (import Decision
Tree Classifier)

KNN n_neighbors = 5 p = 2 leaf_size = 30 sklearn.neighbors (import
KNeighbors Classifier)

3.2. Ranking of Feature Importance

As shown in Figure 8, induvial five bands and selected VIs were ranked using feature
importance techniques with python programming during the model development. The top
five important features in XGB models are MSAVI, NDVI, red, green, and NIR. Moreover,
MSAVI, NDVI, red, blue, and NIR were ranked as the top five features in the RF model,
while NDVI, green, MSAVI, red, and ExG were the top five in the DT model. However, GCI
shows the lowest rank in XGB and DT models while NDRE shows the lowest ranking in
the RF model to detect the WLD in the sugarcane field.
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3.3. Segmentation Results of the Proposed Approaches

Figure 9a represents the multispectral orthomosaic image generated from the UAV
raw images, while Figure 9b shows the WLD spatial map developed by XGB, which is
an optimized model among other ML models. The severe WLD plant shows a red color
in almost all the canopy areas, as shown in Figure 10c. In early symptom plants, most
of the canopy region shows yellow, as shown in Figure 10b, while healthy plants show
green color in most of the canopy region (Figure 10a). However, the margin of the canopy
shows red color in all the classifications due to dead leaves presented in each sugarcane
crop. The spatial distribution of the severity of the WLD of sugarcane is plotted in Figure 9
using different prediction models, such as (a) XGB, (b) RF, (c) DT, and (d) KNN. Segmented
images for photo interpretation and accuracy indicators were implemented for validation
purposes. In total, 117,937 labelled pixels were evaluated from the test to assess the
algorithms. Figure 11 represents the segmentation results of healthy, early symptoms, and
severe symptoms of WLD in sugarcane plants for different ML models.

3.4. Confusion Matrix and Classification Report

The training performance of various machine learning models, such as XGB, RF, DT,
and KNN, was compared over consecutive runs by overall accuracy, F1 score, precision,
and recall. The results indicate that all machine learning models performed similarly well
in the suggested pipeline for detecting WLD. The classification results indicated that all
models achieved high accuracy. The confusion matrix of each model as represented in
Table 9 and the classification reports for each model were as shown in Table 10.
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Table 9. Confusion matrix of different classifiers in the training site.

XGB Ground Cover Shadow Healthy Early Symptom Severe Symptom

Ground Cover 19,248 1 0 2 73
Shadow 5 2029 59 21 21
Healthy 0 39 2552 20 0

Early Symptom 8 26 61 1975 569
Severe symptom 145 37 1 555 2011

RF
Ground Cover 26,993 5 0 1 107

Shadow 10 2846 86 26 12
Healthy 0 56 3582 30 0

Early Symptom 10 34 84 2747 840
Severe symptom 184 52 1 753 2819

DT
Ground Cover 26,884 11 0 13 198

Shadow 13 2754 107 46 60
Healthy 0 107 3488 72 1

Early Symptom 13 57 86 2531 1028
Severe symptom 203 43 0 940 2623

KNN
Ground Cover 19,292 1 0 2 65

Shadow 7 2018 74 18 18
Healthy 0 62 2532 17 0

Early Symptom 16 35 88 1860 631
Severe symptom 171 42 2 609 1925

Table 10. Classification report for different ML models in the training site.

XGB Precision Recall F1-Score Accuracy

Ground cover 0.99 1 0.99

0.94
Shadow 0.95 0.95 0.95
Healthy 0.95 0.98 0.97

Early symptom 0.77 0.75 0.76
Severe symptom 0.75 0.73 0.74

RF
Ground cover 0.99 1 0.99

0.94
Shadow 0.95 0.96 0.95
Healthy 0.95 0.98 0.97

Early symptom 0.77 0.74 0.76
Severe symptom 0.75 0.74 0.74

DT
Ground cover 0.99 0.99 0.99

0.93
Shadow 0.93 0.92 0.93
Healthy 0.95 0.95 0.95

Early symptom 0.70 0.68 0.69
Severe symptom 0.67 0.69 0.68

KNN
Ground cover 0.99 1 0.99

0.94
Shadow 0.94 0.95 0.94
Healthy 0.94 0.97 0.95

Early symptom 0.74 0.71 0.72
Severe symptom 0.73 0.7 0.71

Precision: Ratio between true positives and the sum of true positives and false positives; Recall: Ratio between
true positives and the sum of true positives and false negatives.

The results show that 94% of overall accuracy was attained in the XGB, RF, and KNN
to detect WLD in the field, even though the DT model also shows good overall accuracy
of 93%. Among five classes, ground cover, shadow, and healthy plants were classified
with more than 93% of precision, recall, and F1 scores in all the models. In contrast, early
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and severe symptom crops were classified with more than 75% accuracy in XGB and RF
models. However, the DT model obtained the lowest precision, recall, and F1 scores of 67%,
69%, and 68% to classify the severe symptom crops. According to the previous studies,
Sandino et al. [69] detected healthy and infected trees in the forest with exotic pathogens us-
ing the XGboost algorithms with a 97% classification accuracy. Santoso et al. [40] identified
healthy and unhealthy oil palms with an overall accuracy of 91% using the RF classifier
model. Sandika et al. [70] presented a classification scheme for three grape diseases: an-
thracnose, powdery mildew, and downy mildew by RF. The proposed system achieved a
classification accuracy of 86%. Suresha et al. [71] proposed a method for identifying blast
and brown spot diseases in rice with a KNN classifier with an accuracy of 76.59%. Abdul-
ridha et al. [46] developed the KNN algorithms with an overall classification accuracy of
94%, 95%, and 96% to detect citrus canker on tree canopies in the orchard. Zhang et al. [50]
built optimal BFW classification models with higher overall accuracy (OA) of 97.28% by RF
based on the five multispectral bands.

3.5. Testing and Validation in a Different Field at Gal-Oya Plantation

The K-fold cross-validation technique was used to develop the best trained models of
XGB, RF, DT, and KNN. Finally, the best models were used to detect the WLD in the testing
site located in the same region (Figure 2). In addition to that, validation was performed
by observing and labelling the color tags representing the testing site as explained in
Section 2.3. Finally, another classification report was developed as shown in Table 11. The
results show that 92% of overall accuracy was attained in the XGB, RF, and KNN to detect
WLD in the different fields by using the same ML models while 91% of accuracy was
obtained by the DT model.

Table 11. Classification report for different ML models in the testing site.

XGB Precision Recall F1-Score Accuracy

Healthy 0.93 0.97 0.95
0.92Early symptom 0.75 0.74 0.73

Severe symptom 0.72 0.72 0.71
RF

Healthy 0.91 0.93 0.96
0.92Early symptom 0.74 0.71 0.74

Severe symptom 0.71 0.72 0.71
DT

Healthy 0.93 0.92 0.93
0.91Early symptom 0.68 0.66 0.68

Severe symptom 0.69 0.65 0.67
KNN

Healthy 0.89 0.94 0.94
0.92Early symptom 0.73 0.70 0.70

Severe symptom 0.71 0.67 0.69

3.6. Model Training Time at the Training Site

The training times for each approach under the computer capacity of the 11th Gen
Intel(R) Core (TM) i7-1185G7 @ 3.00GHz, 1805 MHz, 4 Core(s), 8 Logical Processor(s), and
16.0 GB RAM in Microsoft Windows 10 Enterprise are listed in Table 12. The most accurate
team, XGB, also had the smallest training time, nine minutes. KNN’s training took the most
time, 29 min, but had the same total accuracy as XGB. RF and DT had the same overall
accuracy of 94% and 93%, respectively, with 15 and 18 min of training duration.
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Table 12. The training time of the XGB, RF, DT, and KNN.

Classifier Training Time (Minutes)

XGB 9
RF 15
DT 18

KNN 29

4. Discussion

The current study demonstrates a viable strategy for detecting WLD in sugarcane
fields by UAVs and machine learning-based classification models. This methodology will
give a realistic, accurate, and efficient method for determining the presence of WLD in vast
sugarcane fields. VIs are crucial for developing the best classification algorithms because
diseases cause changes in the color, water content, and cell structure of the leaves, which
are reflected in the spectrum [72]. Pigment changes cause visible spectral responses, while
changes in cell structure cause near-infrared spectral responses. Initially, twenty VIs were
selected, and only six VIs were chosen via multicollinearity testing and feature selection
techniques to minimize the training time and resource requirements of the computer because
training time is crucial for model evaluation and to avoid model overfitting. However, the
UAV-derived spectral bands and indices used in this work are not disease-specific; hence, they
can only measure different infestation levels or damage when a single disease impacts the
crop, as they cannot differentiate between their different types of diseases.

Feature selection is important to attain a higher classification accuracy with less
training time. However, it isn’t easy to obtain the best time and accuracy, and hence a
balance must be established based on users’ requirements. Different color tags were used for
ground truth measurements for post image processing of labelling. However, a handheld
GPS meter with higher accuracy can locate each class due to the unavailability of high
accuracy GPS meters. However, it is a good method for validating the prediction results in
the segmented images. Since conducting ground truth investigations into plant diseases
needs professional competence and is time- and labor-intensive, most of the research
relied heavily on sampling surveys, as did the evaluation outcomes [50]. Two-month-old
sugarcane plants were selected in this study because young plants are highly affected
by WLD in the sugarcane industries. Early detection of illnesses is crucial for successful
mitigation actions [46]. However, this study should continue further in various sugarcane
crop stages. Additionally, flight missions should be conducted in different climatic seasons
in different sugarcane varieties to find the severity level of this incident.

Variable optimization was implemented, and just six variables were deemed essential
for developing the various ML prediction models. During the optimization process, all ML
models eliminated less significant variables. Other studies have indicated that excluding
insignificant factors improves the classification performance of machine learning. When
variable relevance is very low, the variable is either unimportant or substantially collinear
with another variable or variables. Based on the five-band pictures and VIs, the selected
ML models, such as XGB, RF, DT, and KNN, produced distribution maps with comparable
results. In addition, the overall classification accuracy of this study employing multispectral
VIs produced from UAVs is equivalent to similar studies described in the preceding sections.
RF has great precision, excellent outlier tolerance, and parameter selection. León-Rueda
et al. [13] also used the RF classifier for the classification process. Lan et al. [17] evaluated
the feasibility of monitoring citrus Huanglongbing (HLB) by using multispectral images,
VIs, and KNN algorithm because KNN is one of the simplest classification algorithms
available. It may be used to solve classification and regression predicting problems with
extremely competitive results [46]. The DT algorithm tends to have more numerical features
in the classification results for data within consistent sample sizes in each category [73].
However, as a result, XGB was chosen as the ideal technology for monitoring WLD in the
sugarcane field because it is highly flexible and works well in small to medium datasets.
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Therefore, the best prediction model was developed with high accuracy within a short
training time.

In the segmentation results, the margin of all the crops was shown in red color due to
the dead leaves. Therefore, precision, recall, and F1 score for early and severe symptoms
were reduced during the training process. It is a limitation of this study. However, severely
diseased plants can be detected easily if the segmented crop canopy is covered completely
with red color. Therefore, further research should be conducted to determine the usefulness
of deep learning algorithms for detecting WLD in sugarcane fields. Only four ML algo-
rithms were selected in this study based on the previous studies mentioned in Section 1.
However, other ML models, such as SVM and LR, can be developed to detect the WLD
while comparing with existing models. In addition to these research gaps, high-resolution
hyperspectral cameras can improve accuracy, and disease-specific VIs should be developed
to detect the specific disease in the sugarcane field.

5. Conclusions

This research utilized multispectral UAV images and machine learning methods to
detect WLD in a sugarcane field. High-resolution multispectral images and pixel-by-
pixel classification answered the need for precise and efficient detection and segmentation
approaches for WLD monitoring. The classification performance of four machine learning
(ML) methods (XGB, RF, DT, and KNN) was comprehensively evaluated from multiple
perspectives, including classification accuracies based on pixel scale and plant scale, the
degree of agreement with the ground truth density maps, and the identified areas of
infection. The total accuracy of all ML models for five-band pictures was greater than 93%.
The experimental results reveal that both XGB and RF performed well in classification. DT,
however, demonstrated the lowest classification performance. The five-multispectral-band
XGB model with a higher OA of 94% and a faster running duration of nine minutes was
deemed the best-supervised model. This study’s findings could guide sugarcane plantation
management for disease identification by pinpointing the precise location of infected areas
in sugarcane fields.
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