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Optimization of Plagiarism Detection using Vector Space Model on 

CUDA Architecture 

Abstract 

Plagiarism is a rapidly rising issue among students that occurs during submission of assignments, 

reports and publications in universities and educational institutions because of the easy 

accessibility of abundant e-resources on the Internet. To mitigate plagiarism among students, 

many tools are available for natural language plagiarism detection. However, they become 

inefficient when dealing with prolific number of documents with large content due to the time they 

consume. Therefore, we have proposed a way for software-based acceleration on text-based 

plagiarism detection using a suitable model on CPU/GPU. For the evaluation on CPU, initially a 

software-based serial vector space model was implemented on CPU and tested with 1000 text- 

based documents particularly, students’ assignments, where it consumed 1641s for plagiarism 

detection. As computation time of the plagiarism detection is a bottleneck of performance while 

treating a prolific number of text-based sources with different sizes, we focus on accelerating and 

optimizing the model with the number of documents. Therefore, this research intends to 

implement and optimize the vector space model on the Graphics Processing Units (GPU) using 

Compute Unified Device Architecture (CUDA). In order to speed-up, a parallel version of the 

model was developed on GPU using CUDA, tested with the same dataset which consumed only 

36s and gained 45x speed up compared to CPU, and when optimized further it took only 4s for 

the same dataset which was 389x faster than serial implementation. 

keywords 

Graphics Processing Units (GPU), Computer Unified Device Architecture (CUDA), Plagiarism Detection, Vector 

Space Model 

 

 
1. Introduction 

Plagiarism can be defined as a violation of the copyright of an author’s or authors’ literature work. 

It refers to copying others’ work or stealing others’ ideas as one’s work without any proper 

acknowledgement which leads to diminishing quality of the work. Plagiarism is a rapidly rising 

issue among students which occurs during submission of assignments, reports, thesis and 

publications in universities due to easy accessibility of abundant electronic resources on the 

Internet. In a survey conducted in the University of California at Berkley, the percentage of 

plagiarism was increased by 74.4% within four years (Lukashenko, 2007). Another study carried 

out by Butakov and Scherbinin (Butakov, 2009) showed that most of the students from high school 

involved in this unprincipled activity. A trend of plagiarized assignment submission among 

students was analysed in the University of Bostwana which depicts that an average of 20.5% 

students involved in this immoral activity (Batane, 2010). Thus, the issue is a trend which needs 

to be controlled and minimized among students. 

As the impact of plagiarism is rising, scrutinizing of one’s literary work is crucial for evaluating 

it properly and equitably. Moreover, manual plagiarism detection needs great effort to examine 

originality of an assignment or a report. Hence, examiners would have to consume a massive 

amount of time in reviewing to provide a high-quality judgment on these documents manually. 

Further, manual detection may be impossible when source and suspicious documents are in an 

increased level. Therefore, an automated tool for plagiarism detection is vital to detect plagiarism 
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and to reduce the workload of the examiner while evaluating students’ creative writing properly 

without wasting their valuable time. 

Though a variety of automated tools for plagiarism detection exists, they are ineffective to deal 

with a large number of documents. Because the greater the number of documents available, the 

more comparisons to be handled. Moreover, these tools can manage limited number and size of 

documents, which consume massive amount of processing time for analysing the documents and 

it becomes unproductive process. For instance, when we deal with 200 documents, there are 

19900 comparisons among them (200×199/2). If we assume that a tool consumes a second to 

check a pair of documents, it would take more than five hours (19900 seconds) to compare unique 

paired of documents. Since there are more comparisons and cross-checking among the whole 

document set, it is a time-consuming process. Moreover, some tools consume a significant amount 

of time to generate a report of the detection while handling enormous documents. In addition, 

these tools can treat only a limited number of documents and small in size at a time. As a result, 

the existing detection tools are incapable to detect plagiarism when treating a prolific number of 

documents. As detection time is a significant factor, it is crucial to optimize plagiarism detection 

by minimizing time consumption in this scenario. Therefore, this research intends to optimize 

plagiarism detection on a massive number of text-based documents efficiently and mitigate the 

plagiarism issue in an academic environment. 

Generally, performance measurement of a tool is evaluated based on two metrics: i) speed and ii) 

accuracy. In our previous study (Jiffriya, 2013), we focused on speed of plagiarism detection, 

where AntiPlag tool was introduced using trigram sequence matching algorithm with a set of 

assignments, and it was compared with Plagiarism Checker X, which consumed more than two 

hours. This depicts that plagiarism detection is a time-consuming process. Moreover, time 

consumption for the detection increases dramatically with respect to the number of documents as 

there are searching processes and higher number of comparisons among them. Then we focus on 

accuracy of plagiarism detection, where a set of assignments were analysed using trigram 

sequence matching algorithm, and the accuracy was compared with the plagiarism detection 

accuracy of vector space model (Jiffriya, 2014). From this study, the vector space model showed 

more reliable results compared to the trigram sequence matching algorithm. Therefore, finding 

accuracy of plagiarism detection is out of the scope of this work and it focuses on speed of the 

detection for the text-based documents. 

The objective of the research is to find a new effective approach to optimize plagiarism detection 

by reducing processing time. The contribution of this work is that we have investigated a new 

approach to detect plagiarism using vector space model to handle a large number of text-based 

documents and reduced the time taken for plagiarism detection from hours to minutes by 

accelerating the process using GPU, and the optimization is achieved through parallelism. 

As plagiarism detection is a time-consuming process, the major contribution of the research is to 

propose an approach to enhance the efficiency of plagiarism detection when we deal with huge 

number of digital documents, which helps to easily identify plagiarized documents without 

wasting more time. Initially we implemented serial version of vector space model for plagiarism 

detection and tested with 1000 documents where it has 499,500 comparisons. Then the model has 

been developed in GPU using CUDA architecture in order to accelerate the detection process, 

where we have used five kernels for it, and tested with the same dataset. The second contribution 

of the work is the optimization of the process, where we focused on optimizing the kernels which 

consume greater time according to Amdhal's law. The optimized version was tested with the 
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datasets and showed 389x faster than the serial version. Eventually, we analysed profile of the 

model which depicts high occupancy rate and device utilization. Although plagiarisms detection 

process is a time-consuming process, the optimized version of vector space model reduces the 

time consumption significantly. Therefore, the model facilitates to detect plagiarism on large 

number of documents efficiently. 

The remaining of the paper is structured as follows: Section 2 reviews related work of the 

existing plagiarism detection domain; Section 3 depicts the methodology where process of data 

collection and parallel implementation of plagiarism algorithm on GPU are included and the 

results are represented in Section 4 and Section 5 concludes findings of the research. 

2. Literature Review 

2.1 Plagiarism Detection Tools 

Plagiarism can be avoided by two major approaches: prevention and detection. The former focuses 

on generating digital documents without making copy and distribution with the help of encryption 

techniques (Yu, 2017). The latter deals with identifying plagiarized portion and proportion of the 

digital documents. We focus on plagiarism detection approach for which several detection tools 

are applied for it. 

The existing automated tools for natural language plagiarism detection can be categorized into 

intra-corpal and extra-corpal tools according to the area of the detection. Intra-corpal tools such 

as CopyFind (B.L) and CopyCatch (White, 2004) detect plagiarism within a set of grouped 

documents in a learning community, whereas EduTie (Lancaster, 2005) and EVE2 (Lancaster, 

2005) are extra-corpal tools which check the similarity among available external sources of 

content on intranet and internet (Kats, 2010). Further, some tools such as iParadigms (Lancaster, 

2005), WORDCheck (Clough, 2000) and Gossip (Lancaster, 2005) are capable for handling both 

intra and extra-corpal plagiarism detection. 

On the other hand, the existing tools such as PlagAware (Malthan, 2006), PlagScan (Markus, 

2014), iThenticate (Cross, 2017), CheckForPlagiarism.net (Academic Paradigms, 2004) and 

plagiarismdetection.org (Plagiarism Detection.org, 2008) are web-based commercial tools which 

are commonly used by institutions and students. A comparison among these tools based on 

features and performance has shown that PlagAware and iThenticate are in first consecutive places 

(Ali, 2011). However, they have some limitations till such as i) they can treat limited number of 

documents and certain file size at a time and ii) they utilize more time when checking a large 

number of documents. For an instance, PlagAware is unable to handle a document that is more 

than 15 MB in size and the execution time for the detection depends on the workload of servers 

and documents’ size (Markus. 2014). Further, Turnitin is a web-based well-known plagiarism 

detection tool used by 35000 educational institutes throughout the world. Though it can support 

400 pages with maximum size of 40 MB, students can check only a maximum of 0.5 MB document 

size within 150,000-character limitation, and the originality report may be generated within a 

minute to hours (Caren, 1998). Also, iThenticate and Ferret do not allow to check a document 

which is more than 25000 and 10000 words respectively (Ali, 2011; Lyon, 2004). Moreover, 

plagiarismDetection.org cannot support multiple document comparisons and consumes more time 

to display the analysed results (Ali, 2011). As a result, plagiarism detection tools become 

inefficient while large amount of text-data are processed due to the time consumption, and some 

tools are incapable for handling these number of documents. Thus, it is a significant bottleneck of 

these tools to generate the result while dealing with numerous sources and suspicious documents. 
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Therefore, this research indents to investigate an approach to handle the scenario efficiently. 

2.2 Plagiarism Detection Approaches 

In analysing plagiarism detection techniques used in the automated tools, there are two main 

approaches practiced to detect plagiarism between documents: a) content-based approach where 

documents are analysed based on the logical structure; b) stylometry-based approach where 

documents are investigated according to an author’s style with an assumption that every author 

has a unique style (Tschuggnall, 2013). Stylometry-based approach is ineffective for analysing 

students’ creative writing. Because it would be incredible to recognize writing style of students as 

they submit assignment for the first time. On the other hand, content-based approach which 

focuses on semantic features of a document, are very commonly used. A variety of algorithms 

were used for the extraction of semantic features of documents such as Winnowing, Fingerprinting 

(Foltýnek, 2020), Hashing (Shin, 2004), Heuristic (Menai, 2012; Foltýnek, 2020), deep neural 

network algorithms such as convolutional neural network and a recurrent neural network 

(Agarwal, 2018), and they gave a varying degree of precision although these algorithms are mostly 

used in video and image processing (Zeng, 2018). AlSallal et al. (AlSallal, 2019) applied 

integrated approach by combining semantic and stylometry approach to improve accuracy of 

plagiarism detection. However, these algorithms have some limitations when extracting features 

from the content and computing similarity such as i) processing time is a limiting factor as number 

of documents are increased and ii) efficiency of the detection declines with the size of documents. 

Therefore, there is a necessity to select an algorithm for accelerating plagiarism detection which 

should have ample number of independent tasks. 

 

 
Table 1: List of tools and techniques that have been used for plagiarism detection and their limitations. 

Author 
Tools & 

Techniques 
Limitations & Remarks 

(Malthan, 2006; Markus, 

2014) 

 

PlagAware 
Web-based commercial tool; Limited to the file size of 15 MB; 

Execution time for the detection depends on the workload of servers and 
documents’ size. 

(Markus, 2014) PlagScan Web-based commercial tool 

(Cross, 1998) iThenticate 
Web-based commercial tool; do not allow to check a document which is 
more than 25000 words. 

(Academic Paradigms, 
2004) 

CheckForPlagiaris 
m.net 

Web-based commercial tool 

(Plagiarism 
Detection.org, 2008) 

plagiarismdetection 
.org 

Web-based commercial tool 

 
(Caren, 1998) 

 
Turnitin 

Web-based commercial tool 

Support 400 pages with maximum size of 40 MB, the student can check 

only maximum 0.5MB document size with 150,000-character limitation 

and the originality report may be generated within a minute to hours. 

(Ali, 2011; Lyon, 2004) Ferret Does not allow to check a document more than10000 words. 

(Ali, 2011) 
plagiarismDetectio 
n.org 

Does not support multiple document comparisons and consumes more 
time to display the analyzed results. 

 
 

Vector space model is well-known for information retrieval in data mining due to its better 

accuracy rate (Gudivada, 1997; Shin, 2004; Turney, 2010). For instance, the work in (Shin, 2004) 

used this model to retrieve related required documents from a medial library, and it shows a better 

performance. Since this model gives a higher precision, researchers focus on applying it to the 

other related fields of study such as semantic similarity (Reinhard, 2003) and plagiarism detection 
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i j 

(Rehurek, 2008; Zechner, 2009; Wang, 2013).  

2.3 Vector Space Model 

Documents are represented as a vector in a vector space model where terms in a document are 

weighted. Thus, the inverse document frequency shown in Equation (1) is multiplied with term 

frequency and form weighted term frequency vector using Equation (2). By calculating document 

length using Equation (3) eventually, the similarity score is calculated using cosine similarity 

measurement as depicted in Equation (4). 

idft  = log (N / dft ) (1) 

dft - Document frequency for term t 
idft - Inverse document frequency for term t 

N - Total number of documents 
Wtfd,t   = Ltfd,t × idft (2) 

Wtfd,t - weighted term frequency vector 

Ltfd,t - Frequency of a term in a document 

idft - Inverse document frequency for term t 

Doc Length (Dld) = (√ΣWtfd,t
2) (3) 

Cos (Di,  Dj) = Σ (Wtfi,t × Wtfj,t) / (√ΣDl 2 × √ΣDl 2) (4) 

Di Dj -Document Pair 

As the model shows a better accuracy rate in our previous study, we plan to apply the existing 

model for plagiarism detection and accelerate it. Because, the model is effective while handling 

with a smaller number of documents with less content, but it takes much processing time to 

generate output as it deals with a huge number of documents due to the involvement of lots of 

string related computation among the combination pair. Also, the time consumption for the 

detection increases quadratically with respect to the number of documents. Therefore, it becomes 

a bottleneck and challenging issue when applying this model to a large number of documents due 

to the higher time consumption. On the other hand, CPU utilization was analysed on duplicate 

document detection using the model, which depicted 58% of CPU allocated for it (Yuan, 2011). 

Further, the speed of the detection reduces with an increased number of documents due to proceed 

the process sequentially by CPU. Therefore, we need to focus on acceleration and optimizing the 

model with the prolific number of documents. There are several advantages of vector space model 

which has been practiced in many applications, and none of the work has reported its parallel 

nature or how it can be used to accelerate the detection process. Therefore, this work attempts to 

investigate the nature of this model in the process of acceleration of detection. 

2.4 Acceleration of Plagiarism Detection 

Plagiarism detection techniques can be accelerated by hardware and software-based approaches. 

In software-based acceleration, two strategies are very frequent. They are: a) clustering approach 

where documents are categorized according to the similarity, and related documents are deviated 

from non-related documents (Li, 2018a; Li, 2018b); b) parallel computing that allows processing 

multiple tasks simultaneously. The parallel computing strategy is an effective technique to 

accelerate plagiarism detection when dealing with a large amount of data. Multi-core CPU and 

Graphics Processing Units (GPUs) can be used for software-based acceleration while Field 

Programmable Gate Arrays (FPGA) can be used for hardware-based acceleration (Grozea, 2010). 

 

In our previous study (Jiffriya, 2013), we have investigated the followings: i) comparison of time 

using trigram sequence matching with existing tools; ii) comparison of plagiarism detection 
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accuracy using trigram sequencing and vector space model (Jiffriya, 2014) where vector space 

model yielded better accuracy and iii) investigation of speed up of trigram sequence matching 

algorithm on Compute Unified Device Architecture (CUDA) architecture using two datasets (with 

the size of 12.1MB and 20.3MB consisted 200 documents in each dataset), which gained 5 and 6 

times speed up respectively with respect to CPU (Jiffriya, 2015). From the analysis, we have 

chosen vector space model to accelerate on CUDA architecture as it performed better in terms of 

accuracy. Since the objective of the work is to investigate how much vector space model can be 

accelerated on GPU using a set of text-based documents, particularly students’ assignments, 

dependency of different type of documents or computation of detection accuracy are out of the 

focus in this work. 

2.5 Compute Unified Device Architecture (CUDA) 

CUDA is a parallel computing and programming model introduced by NVIDIA, which provides 

a cost-effective architecture to perform general purpose computations in a parallel way (Uribe- 

Paredes, 2011), and assists to develop a highly-demanding complex computation programmes in 

an efficient way by exploiting GPU (Menai, 2012). The programme should have ample of parallel 

processing and support for data level parallelism. GPU is a commonly used acceleration technique, 

and it facilitates to perform general purpose computations in a parallel way (Uribe-Paredes, 2011). 

CUDA C is a programming language which enables to communicate with GPUs and facilitates to 

execute kernels where multiple threads can be run simultaneously. GPU is used for accelerating 

many applications such as similarity detection (Cruz, 2015), image processing (Matam, 2011; 

Tsai, 2015) and computer vision (Wang, 2013). Sanjay P. Ahuj (Ahuja, 2020) used GPU to analyse 

the performance of two public cloud providers such as Amazon Web Services and the Google 

Cloud Platform using MPI architecture while Shadi AlZu’bi et al. (AlZu’bi, 2019) used GPU to 

increase efficiency of 3D image segmentation. As GPU is a cost-effective method for parallel 

computing in recent years, we have chosen GPU to accelerate the detection using CUDA 

architecture. 

There are some similarity detection related algorithms applied on GPU for acceleration with 

different methodologies. For instance, a study was performed to accelerate similarity detection 

between documents using MinHash algorithm on GPU which gained 25 times speed up compared 

to serial implementation (Cruz, 2015). In another work, Simhash was developed on CUDA 

architecture to detect near duplicate documents which showed 18x time faster execution than on 

CPU (Feng, 2015). In addition, the optimized Shingle algorithm was developed for duplicate 

detection on CPU using SIMD technology and GPU using OpenCL, which gained 38.5% and 

170% performance respectively (Yuan, 2011). However, to the best of our knowledge, none of 

them accelerates the vector space model on high-performance graphics cards. Therefore, we apply 

the model on GPU to increase the performance during the process of large number of 

documents. From the overall analysis, vector space model is good enough for similarity 

detection, and there are several independent tasks involved in the model, which help to handle in 

a parallel way. Therefore, we have implemented the model with CUDA on GPU and details of 

the implementation is explained in Section III. 

3. METHODS and MATERIALS 

3.1 Data Collection and Data Preparation 

The dataset used for this experiment was collected from a secondary source from a public database 

PAN with different sizes in a text file format (Martin, 2017). Thousand text files were collected 
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Step-1 Local Term Frequency 
 

Step-2 Inverse Document Frequency 

Step-3 Weighted Term Frequency 

Step-4 Document Length 

Step-5 Cosine Similarity Score 

Global Term List Local Term List 

Copy Both Lists to GPU 

List Generation Phase 

Local Documents Global Document 

Sorting 
Merging All Documents, 

Sorting, R emoving Duplicate 

Collection of Documents 

Preprocessing Phase 

Stemming to Root Word 

Removing Stop Words 

where each text file consists of a set of words, diagrams and tables with a word range from 1000 

to 50000. They were pre-processed to generate a list of words and the entire document size was 

about 87 MB. Then the documents were grouped into 20 divisible number from 20, 40, up to 1000 

documents and each group was considered as a dataset, which formed 50 datasets with different 

size in order to test the performance. 

3.2 Methodology 

Figure 1 shows the overview of the implementation where data collected from the PAN website 

(Martin, 2017), is pre-processed and formed as global and local term lists which are then copied 

into device memory. Later, it undergoes few steps to generate a similarity score. The overview of 

the methodology is categorized into three phases: i) pre-processing; ii) list generation and iii) GPU 

implementation as illustrated in Figure 1. 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

3.2.1 Pre-processing 

Figure 1. Overview of Parallel Implementation 

In the pre-processing phase, most of the frequent terms which are irrelevant for similarity detection 

known as stop words, have been removed from all documents and the remaining terms were 

stemmed to root form to extract important features of the documents. Terms in each document are 

sorted in an alphabetical order with duplicate terms and the output document is known as local 

document as illustrated in Figure 1. Meantime, all documents were merged into a single document 

and sorted its terms by removing duplicate terms, and the output document is named as global 

document. The global document consists of all unique terms of local documents. In the pre- 

Cosine Similarity Score Step-5 

Document Length Step-4 

Weighted Term Frequency Step-3 

Inverse Document Frequency Step-2 

Local Term Frequency Step-1 

GPU Implementation Phase 
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processing phase, the least impact terms for similarity detection have been removed and both kind 

of documents have a sorted list of terms which facilitates rapid search. 

Initially, the identification of serial and parallel segments of the model is a crucial step to 

implement the vector space model on the CUDA architecture efficiently. Also, the algorithm 

should have enough parallelism to hide memory latency for the improvement of its performance. 

A CPU is capable for handling sequential computation efficiently while a GPU can carry out a 

huge number of parallel processes. Therefore, serial tasks have been allocated to CPU and 

simultaneous processes have been assigned to the GPU. The implementation is passed through: 

i) list generation and ii) GPU implementation phases. 

 

 
3.2.2 List Generation Phase 

In the list generation phase, the global and the local term lists have been formed by reading from 

global and local documents respectively. Then the both term lists have been copied from the host 

to the device memory. The detection process is a highly memory demanding task when dealing 

with enormous number of documents due to string related operations. Therefore, we have used 

dynamic memory allocation for utilizing memory efficiently. 

3.2.3 GPU Implementation Phase 

The GPU implementation is the last phase of the parallel implementation with CUDA architecture, 

where most of the computations of the model were processed. Though CUDA device has global, 

shared and local memories with divergent features, global memory is used to store global and local 

term lists in a linear fashion as all threads in a grid are capable to access it and its large storage 

capability. In this phase, it consists of five processing steps and was assigned to different kernels 

as illustrated in the Figure 1. Here as each step depends on the yield of its previous step, it was 

impossible to launch all kernels simultaneously. But each of these steps are parallelizable 

individually because terms in a list were independent and details of the implementation are given 

as follows: 

Step -1 

The first step was computing Local Term Frequency which was allocated to kernel-1, where 

threads have been mapped with global term list as illustrated in Figure 2. It shows formation of 

Local Term Frequency parallelly for a document. In the figure, each thread denoted as tx in kernel- 

1 accesses each global term Gtx consecutively, where x is the index, compares with local term list 

using binary searching techniques and identifies whether the global term is located or not in the 

local term list. If it is located, it would go through neighbour local terms Ltx,y to count its frequency 

by sequential searching and form the Local Term Frequency vector which is denoted as Ltfx,y in 

the figure where x and y are document number and term index respectively. These searching 

methods support to locate local term in the list quickly and minimize the time consumption for 

searching with the reduction of number of iterations. A similar process was repeated for each 

document to generate Local Term Frequency vector. 
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Figure 2: Structure of Kernel-1   Figure 3. Structure of Kernel-2 

 

Step -2 

Calculation of the Inverse Document Term Frequency was assigned to kernel-2, where threads 

have been mapped to global term list as depicted in Figure 3. Each thread denoted by tx accessed 

Local Term Frequency of the x index in all documents and counted the frequency of documents 

which had those terms, and calculated the inverse document frequency concurrently indicated by 

idfx in the figure using Equation (1). 

 

 
Step -3 

The third step of the phase is used to compute Weighted Term Frequency where threads in kernel- 

3 have been mapped with the Local Term Frequency vector as shown in Figure 4. In the figure, 

each thread tx accessed x index of Local Term Frequency and its inverse document frequency idfx. 

Weighted term frequency was computed simultaneously by multiplying Local Term Frequency 

with its inverse document frequency as stated in Equation (2). It is represented as Wtfx,y in the 

Figure 4 where x and y indicate as document number and term index respectively, and the thread 

mapping part for it is explained in Section 3.3. 

 

 
Step-4 

Calculating document length of each document was allocated to kernel-4, where each thread tx has 

been assigned to access weighted term frequency of every document Wtfx,y to compute its length 

concurrently using the Equation (3), which is denoted as Dlx in the right side of Figure 5. 
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Figure 4: Structure of Kernel-3 
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Figure 5: Structure of Kernel-4 
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Figure 6. Structure of Kernel-5 
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Step-5 

The final step is computing similarity score of each unique pairs of documents and it is assigned 

to kernel-5, where threads were mapped with each combination to compute similarity score 

between a document pair using the cosine similarity measurement simultaneously. In Figure 6, the 

first two rows show generation of combination among documents indicated as Dx, Dy where x and 

y are document numbers. Later portion depicts representation of documents in a combination as 

weighted term frequency Wtfx,y and document length Dlx in the model. In the figure, each thread tx 

accessed the following vectors: i) weighted term frequency and ii) document length of different 

paired documents. Then, the cosine similarity score was computed using Equation (4) indicated 

as Di, Dj. The figure depicts the process of calculating the similarity score for a pair of 

documents D1, D2 by thread t1. Similarly, all other threads run parallelly to compute the score for 

each pair of documents. In other words, the percentage of plagiarism of each pair of documents 

has been calculated simultaneously while running multiple threads which are equal to the number 

of combinations of document pairs. The combinations can be computed using Equation (5) where 

n is the number of documents in a dataset. 

nC2 = n!/((n-2)!×2!) (5) 

 
3.3 The Selection of a Suitable Block Size 

Thread is a small execution unit in CUDA and a collection of threads grouped together are known 

as a block. Number of threads in a block is called as block size. Selection of a suitable block size 

is one of the influential factors that affects the performance of an algorithm. In the parallel 

implementation, the selection of appropriate block size for each kernel is critical for which popular 

block sizes are chosen such as 256, 512, 768 and 1024, and the sizes are preferred to be a multiple 

of 32 for better performance as the warp size is 32 (NVIDIA, 2014). The maximum threads per 

block is 1024 in 3.5 computing capability. As the parallel programme is developed using five 

kernels, it is important to select an appropriate block size for each kernel for optimized 

performance. Hence, we selected a dataset with 800 documents as input and tested with the four 

mentioned block sizes such as 256, 512, 768 and 1024 in order to identify suitable block size for 

each kernel as block size is a critical factor of the performance. Time consumption of each kernel 

with the four block sizes were computed in seconds as illustrated in Table 2 where the least amount 

of time is considered as an appropriate block size of the kernel as shown in bolded. 

Table 2: Consumption of Time of Kernels with Different Block Size 

 

Block Size 
Consumption of Time of Kernels (in Seconds) 

Kernel-1 Kernel-2 Kernel-3 Kernel-4 Kernel-5 

256 4.63372 0.00264 0.00558 0.0787 14.80296 

512 4.62444 0.00262 0.00001 0.15597 15.72957 

768 4.75439 0.00243 0.00001 0.23734 12.44062 

1024 4.8563 0.00261 0.00001 0.27237 15.63989 

 

According to the Table 2, the first two kernels such as kernel-1 and kernel-2 show better 

performance for the block size of 512 and 768 respectively than the other chosen sizes. In kernel- 

3, it does not show any deviation in execution time between block sizes except 256. Therefore, we 

have applied 2D thread indexing model for kernel-3 as illustrated in Figure 7. In the figure, each 

square denotes Local Term Frequency and document number. Each thread was assigned for per 

square to compute Weighted Term Frequency concurrently by accessing Local Term Frequency 



13  

Thread 

0,0 

Thread 

1,0 

Thread 

... 

Thread 

15,0 

Thread 

0,1 

Thread 

... 

Thread 

... 

Thread 

15,1 

Thread 

... 

Thread 

... 

Thread 

... 

Thread 

... 

Thread 

0,15 

Thread 

1,15 

Thread 

... 

Thread 

15,15 15 

1 

0 

15 ... 1 0 
Local Term Frequency 

and Inverse Document Frequency as depicted in the Figure 4. Block size (16, 16) for kernel-3 has 

shown better performance compared to other block sizes due to memory accessing pattern. In 

kernel-4, it shows an inverse relationship between block size and execution time. Since number of 

computations is less in the step, a few number of threads is enough to handle the process 

independently. Therefore, block size 256 was selected as the best size of block and less than this 

would not be sufficient for parallel computation. The final kernel named kernel-5 depicts better 

performance in 768 block size clearly compared to others. 
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Figure 7. 2D Thread Model for Kernel-3 

 

3.4 Optimization of Vector Space Model 

In the process of optimization implementation, step-1 and step-5 were focused to optimize because 

these steps consume larger time compared to other steps as depicted in Figure 9. In step-1 in 

Section 3.2.3, we have used a binary searching to locate local term and sequential search to 

compute its frequency. To optimize the step, the sequential search has been eliminated instead of 

that and local documents were generated with unique sorted terms and their frequency in the pre- 

processing phase. Hence, after locating local terms, it directly accessed frequency from the 

vector instead of sequentially searching the neighbouring terms. The pre-processing time on 

CPU only increases very slightly. In addition, it reduces the size of local documents by removing 

duplicate terms and enhances the process of locating local terms further with the reduction of 

iterations. 

In step-5, computing the similarity score is assigned to kernel-5, where 1D thread indexing model 

was used and the indexing may be insufficient to run multiple thread simultaneously while the 

number of documents is increased. In addition to that, multiple threads try to access the same 

memory location simultaneously and it becomes a serial process which consumes a lot of time 

than the other kernels. Therefore, to optimize the step, we have applied a 2D thread model with 

the block size (16, 16). It is best suited to get better performance where it reduces the access to the 

same memory location simultaneously by using multiple threads at a time. 
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4. RESULTS AND DISCUSSION 

4.1 Experimental Setup 

For the experiment, a NVIDIA Tesla K40 graphics card, which has 3.5 CUDA compute 

capability with 2880 cores and 12 GB of memory was used. The card was installed on a 

computer with an Intel Xeon E5 2670 processor of 3.7 GHz and 32GB RAM. CUDA C language 

was used to implement the algorithm with CUDA 8.0 toolkit version. Initially, a serial version of 

the vector space algorithm was developed for plagiarism detection using C on CPU and tested 

using a pre-processed 50 datasets each of which comprises of 20, 40, 60 ... to 1000 text-based 

documents. The execution time for each dataset was recorded against the number of documents 

and size of documents. And then, the same algorithm was developed in a parallel approach with 

the help of GPU and CUDA platform using CUDA C, and the parallel version of the model was 

run on the Tesla K40 card with similar datasets. Execution time for both version on CPU and 

GPU plotted against the number and size of documents is shown in Figure 8. Time consumption 

for execution includes the following processes such as generation of lists, copying the lists and 

all computing steps into memory and writing the output to a file in both implementations, which 

were descriptively illustrated in the methodology. Both implementations were tested with 

different size of dataset on CPU and GPU to compare performance of the model. 

4.2 Comparison of Performance 

Figure 8 depicts execution time of serial and parallel version of vector space model on CPU and 

GPU respectively. According to the figure, at the beginning, there is no difference on performance 

between CPU and GPU due to lack of computation to hide memory latency. As the number of 

documents increases more than 300 with the size of 30MB, the time of the serial version on CPU 

rises dramatically, whereas the parallel version shows very slow increment with respect to the 

serial time. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Performance Comparison of Vector Space Model on CPU and GPU 

 

A curve fitted for serial implementation in Figure 8 shows the polynomial relationship between 

the execution time and documents’ size on CPU. In order to show the relationship, Equation (6) 
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PROPORTION OF CONSUMED TIME 

BY KERNELS 

Kernel-5 
74% 

Kernel-1 
25% 

Kernel-4 
1% 

Kernel-2 
0% 

Kernel-3 
0% 

is generated with the highest goodness of fitness where x is the size of documents and y is the 

execution time. The execution time of vector space model on CPU increases polynomial with an 

increased number of documents, meanwhile execution time on GPU is nearly flat compared to 

CPU time. 

y=1.01x2-19.69x+87.81 (6) 

 
 

4.3 Time Consumption with Kernels 

In an analysis of time consumption among kernels as shown in Figure 9, kernel-5 and kernel-1 are 

allocated for computing similarity score and Local Term Frequency. These kernels take 

approximately three quarters and a quarter portion of time respectively, whereas the other kernels 

consume negligible amount of time. Therefore, we can make an assumption according to the 

Amdhal's law that as if we apply optimization technique to kernel-1 and kernel-5, it will enhance 

the performance of the parallel implementation further. Therefore, we focused on optimization of 

the first and last step of the parallel implementation as they consume comparatively higher amount 

of time than the others as explained in Section 3.3. 
 

Figure 9: Proportion of Time Consumption 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10: Optimization of Vector Space Model on GPU 
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4.4 Optimized Performance 

Figure 10 shows performance of parallel and optimized parallel implementation on GPU. Initially, 

both performances are almost equal due to smaller size of dataset up to approximately 30 MB. But 

later, the execution time steadily increases from around 2s to 36s in parallel implementation while 

the time for optimized parallel implementation slowly rises from around 1s to less than 5s due to 

avoiding accessing of same memory location by multiple threads at a time. 

Speedup can be defined as a rate of execution between different implementation. Table 3 shows 

the speedup of an optimized implementation on GPU compared to the serial implementation on 

CPU in terms of number of documents. Speedup is 9x when the number of documents is 100 while 

1000 documents show a 389x speedup. According to the Table 3, it clearly depicts that speedup 

increases with the increased number of documents. 

Table 3: Speedup of optimized implementation 
 

Number of Documents 100 200 300 400 500 600 700 800 900 1000 

Optimized Parallel 
Implementation(s) on GPU 

0.39 0.68 0.99 1.35 1.69 2.11 2.51 2.99 3.51 4.21 

Serial Implementation (s) on 
CPU 

3.65 19.66 58.19 118.72 233.16 352.41 622.02 892.33 1301.98 1641.41 

Speedup 9x 29x 59x 88x 138x 167x 247x 298x 371x 389x 

 

Table 4 depicts that the serial version of vector space model on CPU has taken 1641s to compute 

percentage of plagiarism between pairs of documents among 1000 documents with 499,500 pairs, 

whereas the parallel version on GPU has consumed only 36s for it. On the other hand, the 

optimized parallel implementation has required only 4s for the same dataset. Therefore, the 

parallel version shows 45 times faster than the serial and there is a 9x speedup between optimized 

and non-optimized parallel implementation on GPU. Further, the ratio between the time consumed 

for the serial version on CPU and optimized version on GPU shows 389x. In other way, optimized 

implementation is 389 times faster than the serial implementation. Execution time of parallel 

version increases exponentially with respect to the number of documents, whereas the time for the 

optimized version shows linear relationship and the increment is in minute. 

Table 4: A Summary of Speedup on CPU and GPU 
 

Serial Implementation on CPU Parallel Implementation on GPU Speedup 

1641s 36s 45x 

Parallel Implementation on GPU 
Optimized Parallel implementation 

on GPU 
Speedup 

36s 4s 9x 

Serial Implementation on CPU 
Optimized Parallel implementation 

on GPU 
Speedup 

1641s 4s 389x 

 
 

4.5 Profile of Optimized Vector Space Model 

Table 5 depicts the overall profiling information of the optimized version of the model where 

optimization techniques were applied on kernel-1 and kernel-5 due to the greater time 

consumption for execution. In the table, the highest proportion of time is consumed by kernel-1, 

but before the optimization the highest proportion is in kernel-5 about 74% as shown in Figure 9, 

which is declined to 6% during optimization. In CUDA, the ratio between active warps and 
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maximum number of active warps supported by streaming multiprocessor is known as occupancy 

which depicts utilization of device in terms of computing units (Justin, 2011). Occupancy of 

kernel-1 is increased from 84% to 97% due to optimization. Further, except kernel-4 and kernel- 

5, all kernels have achieved greater occupancy rate with more than 96%, and these kernels utilize 

the device effectively due to hiding memory latency by computations. However, in kernel-4 

memory latency cannot be hidden due to less amount of computation and unavoidable serial 

process. Though kernel-5 shows an increment in occupancy during optimization, it is still in lower 

level due to the process of loading and storing element into the memory. 

Table 5: Profile of Optimized Vector Space Model on GPU 
 

Profile Information of Optimized Parallel Based Implementation 

Properties Kernel-1 Kernel-2 Kernel-3 Kernel-4 Kernel-5 

Consumed Time Proportion 84.90% 0.10% 1.40% 7.60% 6.00% 

Theoretical Occupancy 75.00% 75.00% 62.50% 100.00% 75.00% 

Achieved Occupancy 72.70% 72.30% 61.30% 9.90% 10.20% 

Achieved Occupancy (100%) 96.93% 96.40% 98.08% 9.90% 13.60% 

Register Usage 24 12 41 18 33 

 

 
5. CONCLUSION 

This paper presents a parallel implementation of the vector space model for plagiarism detection 

using CUDA architecture on GPU which shows 45x speedup compared to serial implementation 

on CPU. The parallel version is optimized further on GPU according to the Amdhal's law, which 

gains 389 times speed up than the serial version of the vector space model on CPU. The 

contribution of the study shows a higher speed up compared to previous works on similarity 

detection. Even though, vector space model has string related operations and higher memory 

demand, we could achieve more than 96% occupancy in the first three kernels. Also, we believe 

that we will observe better performance further if we use latest Tesla K80 cards with 3.7 compute 

capability. In this study, we could not ensure reliability of the dataset because it has been collected 

from the external source. Also, there is some issue in collecting large number of documents 

primarily as it has some reputation issues, which affect standard and quality of institutions. 

Further, there is a low indication to achieve high rate of occupancy in the last two kernels. The 

future work of the study will focus on detecting plagiarism on reports and short-books and other 

publications. We will analyse performance of plagiarism detection tools on different types of 

documents such as assignments, reports, thesis, short-books and other documents to compare 

their dependency on different type of documents. 
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