
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/363798118

Optimization of Plagiarism Detection using Vector Space Model on CUDA

Architecture

Preprint · September 2022

CITATIONS

0
READS

7

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Plagiarism Detection in Text based Documents View project

OPTIMIZING PLAGIARISM DETECTION ON TEXT BASED ASSIGNMENTS USING GPUs View project

Akmal Jahan MAC

South Eastern University of Sri Lanka

22 PUBLICATIONS 77 CITATIONS

SEE PROFILE

Hasindu Gamaarachchi

Garvan Institute of Medical Research

40 PUBLICATIONS 287 CITATIONS

SEE PROFILE

Roshan Ragel

University of Peradeniya

190 PUBLICATIONS 1,035 CITATIONS

SEE PROFILE

All content following this page was uploaded by Akmal Jahan MAC on 24 September 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/363798118_Optimization_of_Plagiarism_Detection_using_Vector_Space_Model_on_CUDA_Architecture?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/363798118_Optimization_of_Plagiarism_Detection_using_Vector_Space_Model_on_CUDA_Architecture?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Plagiarism-Detection-in-Text-based-Documents?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/OPTIMIZING-PLAGIARISM-DETECTION-ON-TEXT-BASED-ASSIGNMENTS-USING-GPUs?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Akmal-Jahan-Mac?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Akmal-Jahan-Mac?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/South-Eastern-University-of-Sri-Lanka?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Akmal-Jahan-Mac?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hasindu-Gamaarachchi-2?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hasindu-Gamaarachchi-2?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Garvan_Institute_of_Medical_Research?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hasindu-Gamaarachchi-2?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roshan-Ragel?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roshan-Ragel?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Peradeniya?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roshan-Ragel?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Akmal-Jahan-Mac?enrichId=rgreq-ad57e069579a267f757d610c8662da1a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mzc5ODExODtBUzoxMTQzMTI4MTA4NTk3Mjk4OUAxNjYzOTg0MTMyMjQ4&el=1_x_10&_esc=publicationCoverPdf

1

Optimization of Plagiarism Detection using Vector Space Model on

CUDA Architecture
Jiffriya Mohamed-Abdul-Cadera, Akmal-Jahan Mohamed-Abdul-Caderb, Hasindu

Gamaarachchic and Roshan G. Rageld

aDepartment of Information Technology, Sri Lanka Institute of Advanced Technological Education,

Sammanthurai, Sri Lanka

Email: macjiffriya@gmail.com
bFaculty of Applied Sciences, South Eastern University of Sri Lanka.

Email: akmaljahan@fas.seu.ac.lk
cSchool of Computer Science and Engineering, University of New South Wales, Australia.

Email: hasindu2008@gmail.com
dFaculty of Engineering, University of Peradeniya, Sri Lanka.

Email: roshanr@pdn.ac.lk

Biographical notes:

Ms. Jiffriya Mohamed Abdul Cader received her M.Phil degree in Computer Science from university of

Peradeniya, Sri Lanka. She is a lecturer at the Department of Information Technology, Sri Lanka Institute

of Advanced Technological Education Sammanthurai, Sri Lanka. Her areas of research interest include in

text analysis, GPU computing and optimisation.

Dr. Akmal Jahan Mohamed Abdul Cader received her Ph.D in Computer Science from Queensland

University of Technology, Australia. She is a lecturer at the Department of Computer Science, South

Eastern University of Sri Lanka. Her areas of research interest include Pattern recognition, computer

vision, image processing, document image analysis, machine learning, data mining and GPU computing.

Dr. Hasindu Gamaarachchi received his PhD in Computer Science and Engineering from UNSW Sydney,

Australia. He is currently serving as a researcher at the Garvan Institute of Medical Research, Sydney and

a conjoint lecturer at the School of Computer Science and Engineering, UNSW Sydney. His research

interests are in embedded systems, GPGPU computing and bioinformatics.

Dr R.G. Ragel received his PhD in Computer Science and Engineering the University of New South

Wales, Sydney, Australia. He is a Professor at the Department of Computer Engineering at the University

of Peradeniya, Sri Lanka. He has co-authored more than 150 peer-reviewed articles in topics including

Micro-Architectural Support for Reliability and Security in Embedded Processors (SoC), Internet of

Things (IoT), Side Channel Attacks and Countermeasures, Application Specific Processor Design, High

Performance Computing such as Hardware/Software Acceleration of Bioinformatics Algorithms and

Wearable Computing.

https://www.garvan.org.au/people/hasgam
mailto:macjiffriya@gmail.com
mailto:akmaljahan@fas.seu.ac.lk
mailto:hasindu2008@gmail.com
mailto:roshanr@pdn.ac.lk

2

Optimization of Plagiarism Detection using Vector Space Model on

CUDA Architecture

Abstract

Plagiarism is a rapidly rising issue among students that occurs during submission of assignments,

reports and publications in universities and educational institutions because of the easy

accessibility of abundant e-resources on the Internet. To mitigate plagiarism among students,

many tools are available for natural language plagiarism detection. However, they become

inefficient when dealing with prolific number of documents with large content due to the time they

consume. Therefore, we have proposed a way for software-based acceleration on text-based

plagiarism detection using a suitable model on CPU/GPU. For the evaluation on CPU, initially a

software-based serial vector space model was implemented on CPU and tested with 1000 text-

based documents particularly, students’ assignments, where it consumed 1641s for plagiarism

detection. As computation time of the plagiarism detection is a bottleneck of performance while

treating a prolific number of text-based sources with different sizes, we focus on accelerating and

optimizing the model with the number of documents. Therefore, this research intends to

implement and optimize the vector space model on the Graphics Processing Units (GPU) using

Compute Unified Device Architecture (CUDA). In order to speed-up, a parallel version of the

model was developed on GPU using CUDA, tested with the same dataset which consumed only

36s and gained 45x speed up compared to CPU, and when optimized further it took only 4s for

the same dataset which was 389x faster than serial implementation.

keywords

Graphics Processing Units (GPU), Computer Unified Device Architecture (CUDA), Plagiarism Detection, Vector

Space Model

1. Introduction

Plagiarism can be defined as a violation of the copyright of an author’s or authors’ literature work.

It refers to copying others’ work or stealing others’ ideas as one’s work without any proper

acknowledgement which leads to diminishing quality of the work. Plagiarism is a rapidly rising

issue among students which occurs during submission of assignments, reports, thesis and

publications in universities due to easy accessibility of abundant electronic resources on the

Internet. In a survey conducted in the University of California at Berkley, the percentage of

plagiarism was increased by 74.4% within four years (Lukashenko, 2007). Another study carried

out by Butakov and Scherbinin (Butakov, 2009) showed that most of the students from high school

involved in this unprincipled activity. A trend of plagiarized assignment submission among

students was analysed in the University of Bostwana which depicts that an average of 20.5%

students involved in this immoral activity (Batane, 2010). Thus, the issue is a trend which needs

to be controlled and minimized among students.

As the impact of plagiarism is rising, scrutinizing of one’s literary work is crucial for evaluating

it properly and equitably. Moreover, manual plagiarism detection needs great effort to examine

originality of an assignment or a report. Hence, examiners would have to consume a massive

amount of time in reviewing to provide a high-quality judgment on these documents manually.

Further, manual detection may be impossible when source and suspicious documents are in an

increased level. Therefore, an automated tool for plagiarism detection is vital to detect plagiarism

3

and to reduce the workload of the examiner while evaluating students’ creative writing properly

without wasting their valuable time.

Though a variety of automated tools for plagiarism detection exists, they are ineffective to deal

with a large number of documents. Because the greater the number of documents available, the

more comparisons to be handled. Moreover, these tools can manage limited number and size of

documents, which consume massive amount of processing time for analysing the documents and

it becomes unproductive process. For instance, when we deal with 200 documents, there are

19900 comparisons among them (200×199/2). If we assume that a tool consumes a second to

check a pair of documents, it would take more than five hours (19900 seconds) to compare unique

paired of documents. Since there are more comparisons and cross-checking among the whole

document set, it is a time-consuming process. Moreover, some tools consume a significant amount

of time to generate a report of the detection while handling enormous documents. In addition,

these tools can treat only a limited number of documents and small in size at a time. As a result,

the existing detection tools are incapable to detect plagiarism when treating a prolific number of

documents. As detection time is a significant factor, it is crucial to optimize plagiarism detection

by minimizing time consumption in this scenario. Therefore, this research intends to optimize

plagiarism detection on a massive number of text-based documents efficiently and mitigate the

plagiarism issue in an academic environment.

Generally, performance measurement of a tool is evaluated based on two metrics: i) speed and ii)

accuracy. In our previous study (Jiffriya, 2013), we focused on speed of plagiarism detection,

where AntiPlag tool was introduced using trigram sequence matching algorithm with a set of

assignments, and it was compared with Plagiarism Checker X, which consumed more than two

hours. This depicts that plagiarism detection is a time-consuming process. Moreover, time

consumption for the detection increases dramatically with respect to the number of documents as

there are searching processes and higher number of comparisons among them. Then we focus on

accuracy of plagiarism detection, where a set of assignments were analysed using trigram

sequence matching algorithm, and the accuracy was compared with the plagiarism detection

accuracy of vector space model (Jiffriya, 2014). From this study, the vector space model showed

more reliable results compared to the trigram sequence matching algorithm. Therefore, finding

accuracy of plagiarism detection is out of the scope of this work and it focuses on speed of the

detection for the text-based documents.

The objective of the research is to find a new effective approach to optimize plagiarism detection

by reducing processing time. The contribution of this work is that we have investigated a new

approach to detect plagiarism using vector space model to handle a large number of text-based

documents and reduced the time taken for plagiarism detection from hours to minutes by

accelerating the process using GPU, and the optimization is achieved through parallelism.

As plagiarism detection is a time-consuming process, the major contribution of the research is to

propose an approach to enhance the efficiency of plagiarism detection when we deal with huge

number of digital documents, which helps to easily identify plagiarized documents without

wasting more time. Initially we implemented serial version of vector space model for plagiarism

detection and tested with 1000 documents where it has 499,500 comparisons. Then the model has

been developed in GPU using CUDA architecture in order to accelerate the detection process,

where we have used five kernels for it, and tested with the same dataset. The second contribution

of the work is the optimization of the process, where we focused on optimizing the kernels which

consume greater time according to Amdhal's law. The optimized version was tested with the

4

datasets and showed 389x faster than the serial version. Eventually, we analysed profile of the

model which depicts high occupancy rate and device utilization. Although plagiarisms detection

process is a time-consuming process, the optimized version of vector space model reduces the

time consumption significantly. Therefore, the model facilitates to detect plagiarism on large

number of documents efficiently.

The remaining of the paper is structured as follows: Section 2 reviews related work of the

existing plagiarism detection domain; Section 3 depicts the methodology where process of data

collection and parallel implementation of plagiarism algorithm on GPU are included and the

results are represented in Section 4 and Section 5 concludes findings of the research.

2. Literature Review

2.1 Plagiarism Detection Tools

Plagiarism can be avoided by two major approaches: prevention and detection. The former focuses

on generating digital documents without making copy and distribution with the help of encryption

techniques (Yu, 2017). The latter deals with identifying plagiarized portion and proportion of the

digital documents. We focus on plagiarism detection approach for which several detection tools

are applied for it.

The existing automated tools for natural language plagiarism detection can be categorized into

intra-corpal and extra-corpal tools according to the area of the detection. Intra-corpal tools such

as CopyFind (B.L) and CopyCatch (White, 2004) detect plagiarism within a set of grouped

documents in a learning community, whereas EduTie (Lancaster, 2005) and EVE2 (Lancaster,

2005) are extra-corpal tools which check the similarity among available external sources of

content on intranet and internet (Kats, 2010). Further, some tools such as iParadigms (Lancaster,

2005), WORDCheck (Clough, 2000) and Gossip (Lancaster, 2005) are capable for handling both

intra and extra-corpal plagiarism detection.

On the other hand, the existing tools such as PlagAware (Malthan, 2006), PlagScan (Markus,

2014), iThenticate (Cross, 2017), CheckForPlagiarism.net (Academic Paradigms, 2004) and

plagiarismdetection.org (Plagiarism Detection.org, 2008) are web-based commercial tools which

are commonly used by institutions and students. A comparison among these tools based on

features and performance has shown that PlagAware and iThenticate are in first consecutive places

(Ali, 2011). However, they have some limitations till such as i) they can treat limited number of

documents and certain file size at a time and ii) they utilize more time when checking a large

number of documents. For an instance, PlagAware is unable to handle a document that is more

than 15 MB in size and the execution time for the detection depends on the workload of servers

and documents’ size (Markus. 2014). Further, Turnitin is a web-based well-known plagiarism

detection tool used by 35000 educational institutes throughout the world. Though it can support

400 pages with maximum size of 40 MB, students can check only a maximum of 0.5 MB document

size within 150,000-character limitation, and the originality report may be generated within a

minute to hours (Caren, 1998). Also, iThenticate and Ferret do not allow to check a document

which is more than 25000 and 10000 words respectively (Ali, 2011; Lyon, 2004). Moreover,

plagiarismDetection.org cannot support multiple document comparisons and consumes more time

to display the analysed results (Ali, 2011). As a result, plagiarism detection tools become

inefficient while large amount of text-data are processed due to the time consumption, and some

tools are incapable for handling these number of documents. Thus, it is a significant bottleneck of

these tools to generate the result while dealing with numerous sources and suspicious documents.

5

Therefore, this research indents to investigate an approach to handle the scenario efficiently.

2.2 Plagiarism Detection Approaches

In analysing plagiarism detection techniques used in the automated tools, there are two main

approaches practiced to detect plagiarism between documents: a) content-based approach where

documents are analysed based on the logical structure; b) stylometry-based approach where

documents are investigated according to an author’s style with an assumption that every author

has a unique style (Tschuggnall, 2013). Stylometry-based approach is ineffective for analysing

students’ creative writing. Because it would be incredible to recognize writing style of students as

they submit assignment for the first time. On the other hand, content-based approach which

focuses on semantic features of a document, are very commonly used. A variety of algorithms

were used for the extraction of semantic features of documents such as Winnowing, Fingerprinting

(Foltýnek, 2020), Hashing (Shin, 2004), Heuristic (Menai, 2012; Foltýnek, 2020), deep neural

network algorithms such as convolutional neural network and a recurrent neural network

(Agarwal, 2018), and they gave a varying degree of precision although these algorithms are mostly

used in video and image processing (Zeng, 2018). AlSallal et al. (AlSallal, 2019) applied

integrated approach by combining semantic and stylometry approach to improve accuracy of

plagiarism detection. However, these algorithms have some limitations when extracting features

from the content and computing similarity such as i) processing time is a limiting factor as number

of documents are increased and ii) efficiency of the detection declines with the size of documents.

Therefore, there is a necessity to select an algorithm for accelerating plagiarism detection which

should have ample number of independent tasks.

Table 1: List of tools and techniques that have been used for plagiarism detection and their limitations.

Author
Tools &

Techniques
Limitations & Remarks

(Malthan, 2006; Markus,

2014)

PlagAware
Web-based commercial tool; Limited to the file size of 15 MB;

Execution time for the detection depends on the workload of servers and
documents’ size.

(Markus, 2014) PlagScan Web-based commercial tool

(Cross, 1998) iThenticate
Web-based commercial tool; do not allow to check a document which is
more than 25000 words.

(Academic Paradigms,
2004)

CheckForPlagiaris
m.net

Web-based commercial tool

(Plagiarism
Detection.org, 2008)

plagiarismdetection
.org

Web-based commercial tool

(Caren, 1998)

Turnitin

Web-based commercial tool

Support 400 pages with maximum size of 40 MB, the student can check

only maximum 0.5MB document size with 150,000-character limitation

and the originality report may be generated within a minute to hours.

(Ali, 2011; Lyon, 2004) Ferret Does not allow to check a document more than10000 words.

(Ali, 2011)
plagiarismDetectio
n.org

Does not support multiple document comparisons and consumes more
time to display the analyzed results.

Vector space model is well-known for information retrieval in data mining due to its better

accuracy rate (Gudivada, 1997; Shin, 2004; Turney, 2010). For instance, the work in (Shin, 2004)

used this model to retrieve related required documents from a medial library, and it shows a better

performance. Since this model gives a higher precision, researchers focus on applying it to the

other related fields of study such as semantic similarity (Reinhard, 2003) and plagiarism detection

6

i j

(Rehurek, 2008; Zechner, 2009; Wang, 2013).

2.3 Vector Space Model

Documents are represented as a vector in a vector space model where terms in a document are

weighted. Thus, the inverse document frequency shown in Equation (1) is multiplied with term

frequency and form weighted term frequency vector using Equation (2). By calculating document

length using Equation (3) eventually, the similarity score is calculated using cosine similarity

measurement as depicted in Equation (4).

idft = log (N / dft) (1)

dft - Document frequency for term t
idft - Inverse document frequency for term t

N - Total number of documents
Wtfd,t = Ltfd,t × idft (2)

Wtfd,t - weighted term frequency vector

Ltfd,t - Frequency of a term in a document

idft - Inverse document frequency for term t

Doc Length (Dld) = (√ΣWtfd,t
2) (3)

Cos (Di, Dj) = Σ (Wtfi,t × Wtfj,t) / (√ΣDl 2 × √ΣDl 2) (4)

Di Dj -Document Pair

As the model shows a better accuracy rate in our previous study, we plan to apply the existing

model for plagiarism detection and accelerate it. Because, the model is effective while handling

with a smaller number of documents with less content, but it takes much processing time to

generate output as it deals with a huge number of documents due to the involvement of lots of

string related computation among the combination pair. Also, the time consumption for the

detection increases quadratically with respect to the number of documents. Therefore, it becomes

a bottleneck and challenging issue when applying this model to a large number of documents due

to the higher time consumption. On the other hand, CPU utilization was analysed on duplicate

document detection using the model, which depicted 58% of CPU allocated for it (Yuan, 2011).

Further, the speed of the detection reduces with an increased number of documents due to proceed

the process sequentially by CPU. Therefore, we need to focus on acceleration and optimizing the

model with the prolific number of documents. There are several advantages of vector space model

which has been practiced in many applications, and none of the work has reported its parallel

nature or how it can be used to accelerate the detection process. Therefore, this work attempts to

investigate the nature of this model in the process of acceleration of detection.

2.4 Acceleration of Plagiarism Detection

Plagiarism detection techniques can be accelerated by hardware and software-based approaches.

In software-based acceleration, two strategies are very frequent. They are: a) clustering approach

where documents are categorized according to the similarity, and related documents are deviated

from non-related documents (Li, 2018a; Li, 2018b); b) parallel computing that allows processing

multiple tasks simultaneously. The parallel computing strategy is an effective technique to

accelerate plagiarism detection when dealing with a large amount of data. Multi-core CPU and

Graphics Processing Units (GPUs) can be used for software-based acceleration while Field

Programmable Gate Arrays (FPGA) can be used for hardware-based acceleration (Grozea, 2010).

In our previous study (Jiffriya, 2013), we have investigated the followings: i) comparison of time

using trigram sequence matching with existing tools; ii) comparison of plagiarism detection

7

accuracy using trigram sequencing and vector space model (Jiffriya, 2014) where vector space

model yielded better accuracy and iii) investigation of speed up of trigram sequence matching

algorithm on Compute Unified Device Architecture (CUDA) architecture using two datasets (with

the size of 12.1MB and 20.3MB consisted 200 documents in each dataset), which gained 5 and 6

times speed up respectively with respect to CPU (Jiffriya, 2015). From the analysis, we have

chosen vector space model to accelerate on CUDA architecture as it performed better in terms of

accuracy. Since the objective of the work is to investigate how much vector space model can be

accelerated on GPU using a set of text-based documents, particularly students’ assignments,

dependency of different type of documents or computation of detection accuracy are out of the

focus in this work.

2.5 Compute Unified Device Architecture (CUDA)

CUDA is a parallel computing and programming model introduced by NVIDIA, which provides

a cost-effective architecture to perform general purpose computations in a parallel way (Uribe-

Paredes, 2011), and assists to develop a highly-demanding complex computation programmes in

an efficient way by exploiting GPU (Menai, 2012). The programme should have ample of parallel

processing and support for data level parallelism. GPU is a commonly used acceleration technique,

and it facilitates to perform general purpose computations in a parallel way (Uribe-Paredes, 2011).

CUDA C is a programming language which enables to communicate with GPUs and facilitates to

execute kernels where multiple threads can be run simultaneously. GPU is used for accelerating

many applications such as similarity detection (Cruz, 2015), image processing (Matam, 2011;

Tsai, 2015) and computer vision (Wang, 2013). Sanjay P. Ahuj (Ahuja, 2020) used GPU to analyse

the performance of two public cloud providers such as Amazon Web Services and the Google

Cloud Platform using MPI architecture while Shadi AlZu’bi et al. (AlZu’bi, 2019) used GPU to

increase efficiency of 3D image segmentation. As GPU is a cost-effective method for parallel

computing in recent years, we have chosen GPU to accelerate the detection using CUDA

architecture.

There are some similarity detection related algorithms applied on GPU for acceleration with

different methodologies. For instance, a study was performed to accelerate similarity detection

between documents using MinHash algorithm on GPU which gained 25 times speed up compared

to serial implementation (Cruz, 2015). In another work, Simhash was developed on CUDA

architecture to detect near duplicate documents which showed 18x time faster execution than on

CPU (Feng, 2015). In addition, the optimized Shingle algorithm was developed for duplicate

detection on CPU using SIMD technology and GPU using OpenCL, which gained 38.5% and

170% performance respectively (Yuan, 2011). However, to the best of our knowledge, none of

them accelerates the vector space model on high-performance graphics cards. Therefore, we apply

the model on GPU to increase the performance during the process of large number of

documents. From the overall analysis, vector space model is good enough for similarity

detection, and there are several independent tasks involved in the model, which help to handle in

a parallel way. Therefore, we have implemented the model with CUDA on GPU and details of

the implementation is explained in Section III.

3. METHODS and MATERIALS

3.1 Data Collection and Data Preparation

The dataset used for this experiment was collected from a secondary source from a public database

PAN with different sizes in a text file format (Martin, 2017). Thousand text files were collected

8

Step-1 Local Term Frequency

Step-2 Inverse Document Frequency

Step-3 Weighted Term Frequency

Step-4 Document Length

Step-5 Cosine Similarity Score

Global Term List Local Term List

Copy Both Lists to GPU

List Generation Phase

Local Documents Global Document

Sorting
Merging All Documents,

Sorting, R emoving Duplicate

Collection of Documents

Preprocessing Phase

Stemming to Root Word

Removing Stop Words

where each text file consists of a set of words, diagrams and tables with a word range from 1000

to 50000. They were pre-processed to generate a list of words and the entire document size was

about 87 MB. Then the documents were grouped into 20 divisible number from 20, 40, up to 1000

documents and each group was considered as a dataset, which formed 50 datasets with different

size in order to test the performance.

3.2 Methodology

Figure 1 shows the overview of the implementation where data collected from the PAN website

(Martin, 2017), is pre-processed and formed as global and local term lists which are then copied

into device memory. Later, it undergoes few steps to generate a similarity score. The overview of

the methodology is categorized into three phases: i) pre-processing; ii) list generation and iii) GPU

implementation as illustrated in Figure 1.

3.2.1 Pre-processing

Figure 1. Overview of Parallel Implementation

In the pre-processing phase, most of the frequent terms which are irrelevant for similarity detection

known as stop words, have been removed from all documents and the remaining terms were

stemmed to root form to extract important features of the documents. Terms in each document are

sorted in an alphabetical order with duplicate terms and the output document is known as local

document as illustrated in Figure 1. Meantime, all documents were merged into a single document

and sorted its terms by removing duplicate terms, and the output document is named as global

document. The global document consists of all unique terms of local documents. In the pre-

Cosine Similarity Score Step-5

Document Length Step-4

Weighted Term Frequency Step-3

Inverse Document Frequency Step-2

Local Term Frequency Step-1

GPU Implementation Phase

9

processing phase, the least impact terms for similarity detection have been removed and both kind

of documents have a sorted list of terms which facilitates rapid search.

Initially, the identification of serial and parallel segments of the model is a crucial step to

implement the vector space model on the CUDA architecture efficiently. Also, the algorithm

should have enough parallelism to hide memory latency for the improvement of its performance.

A CPU is capable for handling sequential computation efficiently while a GPU can carry out a

huge number of parallel processes. Therefore, serial tasks have been allocated to CPU and

simultaneous processes have been assigned to the GPU. The implementation is passed through:

i) list generation and ii) GPU implementation phases.

3.2.2 List Generation Phase

In the list generation phase, the global and the local term lists have been formed by reading from

global and local documents respectively. Then the both term lists have been copied from the host

to the device memory. The detection process is a highly memory demanding task when dealing

with enormous number of documents due to string related operations. Therefore, we have used

dynamic memory allocation for utilizing memory efficiently.

3.2.3 GPU Implementation Phase

The GPU implementation is the last phase of the parallel implementation with CUDA architecture,

where most of the computations of the model were processed. Though CUDA device has global,

shared and local memories with divergent features, global memory is used to store global and local

term lists in a linear fashion as all threads in a grid are capable to access it and its large storage

capability. In this phase, it consists of five processing steps and was assigned to different kernels

as illustrated in the Figure 1. Here as each step depends on the yield of its previous step, it was

impossible to launch all kernels simultaneously. But each of these steps are parallelizable

individually because terms in a list were independent and details of the implementation are given

as follows:

Step -1

The first step was computing Local Term Frequency which was allocated to kernel-1, where

threads have been mapped with global term list as illustrated in Figure 2. It shows formation of

Local Term Frequency parallelly for a document. In the figure, each thread denoted as tx in kernel-

1 accesses each global term Gtx consecutively, where x is the index, compares with local term list

using binary searching techniques and identifies whether the global term is located or not in the

local term list. If it is located, it would go through neighbour local terms Ltx,y to count its frequency

by sequential searching and form the Local Term Frequency vector which is denoted as Ltfx,y in

the figure where x and y are document number and term index respectively. These searching

methods support to locate local term in the list quickly and minimize the time consumption for

searching with the reduction of number of iterations. A similar process was repeated for each

document to generate Local Term Frequency vector.

10

Gt1 Gt2 Gt3 Gt4 Gt5 Gt.. Gtn-1 Gtn

Global Term List

t1 t3 t5 t.. tn-1 tn

Lt1,1 Lt1,2 Lt1,3 Lt1,4 Lt1,5 Lt.. Lt1,m-1 Lt1,m

Local Term List

Ltf1,1 Ltf1,2 Ltf1,3 Ltf1,.. Ltf1,.. Ltf1,.. Ltf1,n-1 Ltf1,n

Local Term Frequency

D1

D1

t2 t4

Ltf1,1 Ltf1,2 Ltf1,3 Ltf1,.. Ltf1,.. Ltf1,.. Ltf1,.. Ltf1,n

Ltf2,1 Ltf2,2 Ltf2,3 Ltf.. Ltf.. Ltf.. Ltf.. Ltf2,n

Ltf3,1 Ltf3,2 Ltf3,3 Ltf.. Ltf.. Ltf.. Ltf.. Ltf3,n

D1

D2

D3

Local Term Frequency

t1t1 t..t..

idf1 idf2 idf.. idf.. idf.. idf.. idf.. idfnidf1 idf2 idf.. idf.. idf.. idf.. idf.. idfn

Inverse Document Frequency

t2t2 tntnt..t.. t..t.. t..t.. t..t..

Figure 2: Structure of Kernel-1 Figure 3. Structure of Kernel-2

Step -2

Calculation of the Inverse Document Term Frequency was assigned to kernel-2, where threads

have been mapped to global term list as depicted in Figure 3. Each thread denoted by tx accessed

Local Term Frequency of the x index in all documents and counted the frequency of documents

which had those terms, and calculated the inverse document frequency concurrently indicated by

idfx in the figure using Equation (1).

Step -3

The third step of the phase is used to compute Weighted Term Frequency where threads in kernel-

3 have been mapped with the Local Term Frequency vector as shown in Figure 4. In the figure,

each thread tx accessed x index of Local Term Frequency and its inverse document frequency idfx.

Weighted term frequency was computed simultaneously by multiplying Local Term Frequency

with its inverse document frequency as stated in Equation (2). It is represented as Wtfx,y in the

Figure 4 where x and y indicate as document number and term index respectively, and the thread

mapping part for it is explained in Section 3.3.

Step-4

Calculating document length of each document was allocated to kernel-4, where each thread tx has

been assigned to access weighted term frequency of every document Wtfx,y to compute its length

concurrently using the Equation (3), which is denoted as Dlx in the right side of Figure 5.

11

Ltf1,1 Ltf1,2 Ltf1,3 Ltf1,.. Ltf.. Ltf.. Ltf.. Ltf1,n

Ltf2,1 Ltf2,2 Ltf.. Ltf.. Ltf.. Ltf.. Ltf.. Ltf2,n

Ltf3,1 Ltf3,2 Ltf.. Ltf.. Ltf.. Ltf.. Ltf.. Ltf3,n

idf1 idf2 idf.. idf.. idf.. idf.. idf.. idfn

Wtf1,1 Wtf1,2 Wtf1,.. Wtf.. Wtf.. Wtf.. Wtf.. Wtf1,n

Wtf2,1 Wtf2,2 Wtf.. Wtf.. Wtf.. Wtf.. Wtf.. Wtf2,n

Wtf3,1 Wtf3,2 Wtf.. Wtf.. Wtf.. Wtf.. Wtf.. Wtf3,n

Wtf1,1 Wtf1,2 Wtf.. Wtf.. Wtf.. Wtf1,n Dl1

Wtf1,1 Wtf..

Wtf2,1 Wtf..

Ltf1,1 Ltf1,2 Ltf1,3 Ltf1,.. Ltf.. Ltf.. Ltf.. Ltf1,nLtf1,1 Ltf1,2 Ltf1,3 Ltf1,.. Ltf.. Ltf.. Ltf.. Ltf1,n

Ltf2,1 Ltf2,2 Ltf.. Ltf.. Ltf.. Ltf.. Ltf.. Ltf2,nLtf2,1 Ltf2,2 Ltf.. Ltf.. Ltf.. Ltf.. Ltf.. Ltf2,n

Ltf3,1 Ltf3,2 Ltf.. Ltf.. Ltf.. Ltf.. Ltf.. Ltf3,nLtf3,1 Ltf3,2 Ltf.. Ltf.. Ltf.. Ltf.. Ltf.. Ltf3,n

D1

D2

D3

Local Term Frequency

t1t1 t..t..t2t2 tmtmt..t.. t..t.. t..t.. t..t..

idf1 idf2 idf.. idf.. idf.. idf.. idf.. idfnidf1 idf2 idf.. idf.. idf.. idf.. idf.. idfn

Inverse Document Frequency

t..t.. t..t.. tntn t..t.. t..t.. t..t..t..t..

Wtf1,1 Wtf1,2 Wtf1,.. Wtf.. Wtf.. Wtf.. Wtf.. Wtf1,nWtf1,1 Wtf1,2 Wtf1,.. Wtf.. Wtf.. Wtf.. Wtf.. Wtf1,n

Wtf2,1 Wtf2,2 Wtf.. Wtf.. Wtf.. Wtf.. Wtf.. Wtf2,nWtf2,1 Wtf2,2 Wtf.. Wtf.. Wtf.. Wtf.. Wtf.. Wtf2,n

Wtf3,1 Wtf3,2 Wtf.. Wtf.. Wtf.. Wtf.. Wtf.. Wtf3,nWtf3,1 Wtf3,2 Wtf.. Wtf.. Wtf.. Wtf.. Wtf.. Wtf3,n

D1

D2

D3

Weighted Term Frequency

Figure 4: Structure of Kernel-3

Wtf2,1 Wtf2,2 Wtf.. Wtf.. Wtf.. Wtf2,n

Wtf3,1 Wtf3,2 Wtf.. Wtf.. Wtf.. Wtf3,n

D1

D2

D3

Weighted Term Frequency

t1t1

t2t2

t3t3

Document Length

Wtf1,1 Wtf1,2 Wtf.. Wtf.. Wtf.. Wtf1,nWtf1,1 Wtf1,2 Wtf.. Wtf.. Wtf.. Wtf1,n Dl1

Dl2

Dl3

Dl1

Dl2

Dl3

Figure 5: Structure of Kernel-4

Wtf1,1 Wtf.. Wtf.. Wtf.. Wtf.. Wtf1,nD1 Wtf1,1 Wtf.. Wtf.. Wtf.. Wtf.. Wtf1,nD1

Wtf2,1 Wtf.. Wtf.. Wtf.. Wtf.. Wtf2,nWtf2,1 Wtf.. Wtf.. Wtf.. Wtf.. Wtf2,nD2

D1 D2 D3 D.. D.. D.. D.. Dn

D1,D2 D1,D3 D1,D.. D.,D.. D.,D.. D.,D.. D.,D..
Dn-1 ,

Dn.

Combination

t1t1 t..t..t2t2 tmtmt..t.. t..t.. t..t.. t..t..

Sim1,2 Sim1,3 Simi.. Simi.. Simi.. Simi.. Simi..
Simin-

1,n

Dl1

Dl2

Figure 6. Structure of Kernel-5

12

Step-5

The final step is computing similarity score of each unique pairs of documents and it is assigned

to kernel-5, where threads were mapped with each combination to compute similarity score

between a document pair using the cosine similarity measurement simultaneously. In Figure 6, the

first two rows show generation of combination among documents indicated as Dx, Dy where x and

y are document numbers. Later portion depicts representation of documents in a combination as

weighted term frequency Wtfx,y and document length Dlx in the model. In the figure, each thread tx

accessed the following vectors: i) weighted term frequency and ii) document length of different

paired documents. Then, the cosine similarity score was computed using Equation (4) indicated

as Di, Dj. The figure depicts the process of calculating the similarity score for a pair of

documents D1, D2 by thread t1. Similarly, all other threads run parallelly to compute the score for

each pair of documents. In other words, the percentage of plagiarism of each pair of documents

has been calculated simultaneously while running multiple threads which are equal to the number

of combinations of document pairs. The combinations can be computed using Equation (5) where

n is the number of documents in a dataset.

nC2 = n!/((n-2)!×2!) (5)

3.3 The Selection of a Suitable Block Size

Thread is a small execution unit in CUDA and a collection of threads grouped together are known

as a block. Number of threads in a block is called as block size. Selection of a suitable block size

is one of the influential factors that affects the performance of an algorithm. In the parallel

implementation, the selection of appropriate block size for each kernel is critical for which popular

block sizes are chosen such as 256, 512, 768 and 1024, and the sizes are preferred to be a multiple

of 32 for better performance as the warp size is 32 (NVIDIA, 2014). The maximum threads per

block is 1024 in 3.5 computing capability. As the parallel programme is developed using five

kernels, it is important to select an appropriate block size for each kernel for optimized

performance. Hence, we selected a dataset with 800 documents as input and tested with the four

mentioned block sizes such as 256, 512, 768 and 1024 in order to identify suitable block size for

each kernel as block size is a critical factor of the performance. Time consumption of each kernel

with the four block sizes were computed in seconds as illustrated in Table 2 where the least amount

of time is considered as an appropriate block size of the kernel as shown in bolded.

Table 2: Consumption of Time of Kernels with Different Block Size

Block Size
Consumption of Time of Kernels (in Seconds)

Kernel-1 Kernel-2 Kernel-3 Kernel-4 Kernel-5

256 4.63372 0.00264 0.00558 0.0787 14.80296

512 4.62444 0.00262 0.00001 0.15597 15.72957

768 4.75439 0.00243 0.00001 0.23734 12.44062

1024 4.8563 0.00261 0.00001 0.27237 15.63989

According to the Table 2, the first two kernels such as kernel-1 and kernel-2 show better

performance for the block size of 512 and 768 respectively than the other chosen sizes. In kernel-

3, it does not show any deviation in execution time between block sizes except 256. Therefore, we

have applied 2D thread indexing model for kernel-3 as illustrated in Figure 7. In the figure, each

square denotes Local Term Frequency and document number. Each thread was assigned for per

square to compute Weighted Term Frequency concurrently by accessing Local Term Frequency

13

Thread

0,0

Thread

1,0

Thread

...

Thread

15,0

Thread

0,1

Thread

...

Thread

...

Thread

15,1

Thread

...

Thread

...

Thread

...

Thread

...

Thread

0,15

Thread

1,15

Thread

...

Thread

15,15 15

1

0

15 ... 1 0
Local Term Frequency

and Inverse Document Frequency as depicted in the Figure 4. Block size (16, 16) for kernel-3 has

shown better performance compared to other block sizes due to memory accessing pattern. In

kernel-4, it shows an inverse relationship between block size and execution time. Since number of

computations is less in the step, a few number of threads is enough to handle the process

independently. Therefore, block size 256 was selected as the best size of block and less than this

would not be sufficient for parallel computation. The final kernel named kernel-5 depicts better

performance in 768 block size clearly compared to others.

Thread

0,0

Thread

1,0

Thread

...

Thread

15,0

Thread

0,1

Thread

...

Thread

...

Thread

15,1

Thread

...

Thread

...

Thread

...

Thread

...

Thread

0,15

Thread

1,15

Thread

...

Thread

15,15

Figure 7. 2D Thread Model for Kernel-3

3.4 Optimization of Vector Space Model

In the process of optimization implementation, step-1 and step-5 were focused to optimize because

these steps consume larger time compared to other steps as depicted in Figure 9. In step-1 in

Section 3.2.3, we have used a binary searching to locate local term and sequential search to

compute its frequency. To optimize the step, the sequential search has been eliminated instead of

that and local documents were generated with unique sorted terms and their frequency in the pre-

processing phase. Hence, after locating local terms, it directly accessed frequency from the

vector instead of sequentially searching the neighbouring terms. The pre-processing time on

CPU only increases very slightly. In addition, it reduces the size of local documents by removing

duplicate terms and enhances the process of locating local terms further with the reduction of

iterations.

In step-5, computing the similarity score is assigned to kernel-5, where 1D thread indexing model

was used and the indexing may be insufficient to run multiple thread simultaneously while the

number of documents is increased. In addition to that, multiple threads try to access the same

memory location simultaneously and it becomes a serial process which consumes a lot of time

than the other kernels. Therefore, to optimize the step, we have applied a 2D thread model with

the block size (16, 16). It is best suited to get better performance where it reduces the access to the

same memory location simultaneously by using multiple threads at a time.

N
o

 o
f

D
o

cu
m

en
t

..
.

14

4. RESULTS AND DISCUSSION

4.1 Experimental Setup

For the experiment, a NVIDIA Tesla K40 graphics card, which has 3.5 CUDA compute

capability with 2880 cores and 12 GB of memory was used. The card was installed on a

computer with an Intel Xeon E5 2670 processor of 3.7 GHz and 32GB RAM. CUDA C language

was used to implement the algorithm with CUDA 8.0 toolkit version. Initially, a serial version of

the vector space algorithm was developed for plagiarism detection using C on CPU and tested

using a pre-processed 50 datasets each of which comprises of 20, 40, 60 ... to 1000 text-based

documents. The execution time for each dataset was recorded against the number of documents

and size of documents. And then, the same algorithm was developed in a parallel approach with

the help of GPU and CUDA platform using CUDA C, and the parallel version of the model was

run on the Tesla K40 card with similar datasets. Execution time for both version on CPU and

GPU plotted against the number and size of documents is shown in Figure 8. Time consumption

for execution includes the following processes such as generation of lists, copying the lists and

all computing steps into memory and writing the output to a file in both implementations, which

were descriptively illustrated in the methodology. Both implementations were tested with

different size of dataset on CPU and GPU to compare performance of the model.

4.2 Comparison of Performance

Figure 8 depicts execution time of serial and parallel version of vector space model on CPU and

GPU respectively. According to the figure, at the beginning, there is no difference on performance

between CPU and GPU due to lack of computation to hide memory latency. As the number of

documents increases more than 300 with the size of 30MB, the time of the serial version on CPU

rises dramatically, whereas the parallel version shows very slow increment with respect to the

serial time.

Figure 8: Performance Comparison of Vector Space Model on CPU and GPU

A curve fitted for serial implementation in Figure 8 shows the polynomial relationship between

the execution time and documents’ size on CPU. In order to show the relationship, Equation (6)

VECTOR SPACE MODEL ON CPU VS GPU

Parallel Implementation on GPU

1500 Serial Impelementation on CPU y = 1.0108x2 - 19.69x + 87.813
Poly. (Serial Impelementation on CPU) R² = 0.9955

1250

1000

750

500

250

0

2.5 12 19.8 29.2 38.1 46.6 54.6 62.7 71.6 80.4
SIZE OF DOCUMENTS (MB)

20 120 220 320 420 520 620 720 820 920
NUMBER OF DOCUMENTS

E
X

E
C

U
T

IO
N

 T
IM

E
 (

S
)

15

PROPORTION OF CONSUMED TIME

BY KERNELS

Kernel-5
74%

Kernel-1
25%

Kernel-4
1%

Kernel-2
0%

Kernel-3
0%

is generated with the highest goodness of fitness where x is the size of documents and y is the

execution time. The execution time of vector space model on CPU increases polynomial with an

increased number of documents, meanwhile execution time on GPU is nearly flat compared to

CPU time.

y=1.01x2-19.69x+87.81 (6)

4.3 Time Consumption with Kernels

In an analysis of time consumption among kernels as shown in Figure 9, kernel-5 and kernel-1 are

allocated for computing similarity score and Local Term Frequency. These kernels take

approximately three quarters and a quarter portion of time respectively, whereas the other kernels

consume negligible amount of time. Therefore, we can make an assumption according to the

Amdhal's law that as if we apply optimization technique to kernel-1 and kernel-5, it will enhance

the performance of the parallel implementation further. Therefore, we focused on optimization of

the first and last step of the parallel implementation as they consume comparatively higher amount

of time than the others as explained in Section 3.3.

Figure 9: Proportion of Time Consumption

Figure 10: Optimization of Vector Space Model on GPU

EXECUTION TIME VS. SIZE OF DATASETS

40

Parallel Implementation on GPU

30

20

10

0

2.5 12.0 19.8 29.2 38.1 46.6 54.6 62.7 71.6 80.4

SIZE OF DOCUMENTS (MB)

E
X

E
C

U
T

IO
N

 T
IM

E
 (

S
)

16

4.4 Optimized Performance

Figure 10 shows performance of parallel and optimized parallel implementation on GPU. Initially,

both performances are almost equal due to smaller size of dataset up to approximately 30 MB. But

later, the execution time steadily increases from around 2s to 36s in parallel implementation while

the time for optimized parallel implementation slowly rises from around 1s to less than 5s due to

avoiding accessing of same memory location by multiple threads at a time.

Speedup can be defined as a rate of execution between different implementation. Table 3 shows

the speedup of an optimized implementation on GPU compared to the serial implementation on

CPU in terms of number of documents. Speedup is 9x when the number of documents is 100 while

1000 documents show a 389x speedup. According to the Table 3, it clearly depicts that speedup

increases with the increased number of documents.

Table 3: Speedup of optimized implementation

Number of Documents 100 200 300 400 500 600 700 800 900 1000

Optimized Parallel
Implementation(s) on GPU

0.39 0.68 0.99 1.35 1.69 2.11 2.51 2.99 3.51 4.21

Serial Implementation (s) on
CPU

3.65 19.66 58.19 118.72 233.16 352.41 622.02 892.33 1301.98 1641.41

Speedup 9x 29x 59x 88x 138x 167x 247x 298x 371x 389x

Table 4 depicts that the serial version of vector space model on CPU has taken 1641s to compute

percentage of plagiarism between pairs of documents among 1000 documents with 499,500 pairs,

whereas the parallel version on GPU has consumed only 36s for it. On the other hand, the

optimized parallel implementation has required only 4s for the same dataset. Therefore, the

parallel version shows 45 times faster than the serial and there is a 9x speedup between optimized

and non-optimized parallel implementation on GPU. Further, the ratio between the time consumed

for the serial version on CPU and optimized version on GPU shows 389x. In other way, optimized

implementation is 389 times faster than the serial implementation. Execution time of parallel

version increases exponentially with respect to the number of documents, whereas the time for the

optimized version shows linear relationship and the increment is in minute.

Table 4: A Summary of Speedup on CPU and GPU

Serial Implementation on CPU Parallel Implementation on GPU Speedup

1641s 36s 45x

Parallel Implementation on GPU
Optimized Parallel implementation

on GPU
Speedup

36s 4s 9x

Serial Implementation on CPU
Optimized Parallel implementation

on GPU
Speedup

1641s 4s 389x

4.5 Profile of Optimized Vector Space Model

Table 5 depicts the overall profiling information of the optimized version of the model where

optimization techniques were applied on kernel-1 and kernel-5 due to the greater time

consumption for execution. In the table, the highest proportion of time is consumed by kernel-1,

but before the optimization the highest proportion is in kernel-5 about 74% as shown in Figure 9,

which is declined to 6% during optimization. In CUDA, the ratio between active warps and

17

maximum number of active warps supported by streaming multiprocessor is known as occupancy

which depicts utilization of device in terms of computing units (Justin, 2011). Occupancy of

kernel-1 is increased from 84% to 97% due to optimization. Further, except kernel-4 and kernel-

5, all kernels have achieved greater occupancy rate with more than 96%, and these kernels utilize

the device effectively due to hiding memory latency by computations. However, in kernel-4

memory latency cannot be hidden due to less amount of computation and unavoidable serial

process. Though kernel-5 shows an increment in occupancy during optimization, it is still in lower

level due to the process of loading and storing element into the memory.

Table 5: Profile of Optimized Vector Space Model on GPU

Profile Information of Optimized Parallel Based Implementation

Properties Kernel-1 Kernel-2 Kernel-3 Kernel-4 Kernel-5

Consumed Time Proportion 84.90% 0.10% 1.40% 7.60% 6.00%

Theoretical Occupancy 75.00% 75.00% 62.50% 100.00% 75.00%

Achieved Occupancy 72.70% 72.30% 61.30% 9.90% 10.20%

Achieved Occupancy (100%) 96.93% 96.40% 98.08% 9.90% 13.60%

Register Usage 24 12 41 18 33

5. CONCLUSION

This paper presents a parallel implementation of the vector space model for plagiarism detection

using CUDA architecture on GPU which shows 45x speedup compared to serial implementation

on CPU. The parallel version is optimized further on GPU according to the Amdhal's law, which

gains 389 times speed up than the serial version of the vector space model on CPU. The

contribution of the study shows a higher speed up compared to previous works on similarity

detection. Even though, vector space model has string related operations and higher memory

demand, we could achieve more than 96% occupancy in the first three kernels. Also, we believe

that we will observe better performance further if we use latest Tesla K80 cards with 3.7 compute

capability. In this study, we could not ensure reliability of the dataset because it has been collected

from the external source. Also, there is some issue in collecting large number of documents

primarily as it has some reputation issues, which affect standard and quality of institutions.

Further, there is a low indication to achieve high rate of occupancy in the last two kernels. The

future work of the study will focus on detecting plagiarism on reports and short-books and other

publications. We will analyse performance of plagiarism detection tools on different types of

documents such as assignments, reports, thesis, short-books and other documents to compare

their dependency on different type of documents.

References
[1] Academic Paradigms, L., 2004. checkforplagiarism.net. [Online] Available at:

https://www.checkforplagiarism.net [Accessed 20 April 2017].

[2] Ali, A., Abdulla, H., Snasel, V., 2011. Overview and comparison of plagiarism detection tools.,

Conference: Proceedings of the Dateso 2011: Annual International Workshop on Databases. pp.

161–172.

[3] B, L,. The plagiarism resource site. URL:

http://plagiarism.bloomfieldmedia.com/wordpress/software/copyfind/.

https://www.checkforplagiarism.net/
http://plagiarism.bloomfieldmedia.com/wordpress/software/copyfind/

18

[4] Butakov, S., Scherbinin, V., 2009. The toolbox for local and global plagiarism detection.

Computers & Education 52, 781– 788. URL:

http://www.sciencedirect.com/science/article/pii/S0360131508001930, doi:

https://doi.org/10.1016/j.compedu.2008.12.001.

[5] Cross, C., 1998. ithenticate. [Online] Available at: http://www.ithenticate.com [Accessed 22

April 2017].

[6] Caren, C., 1998. Turnitin. URL: http://turnitin.com.

[7] Clough, P., 2000. Plagiarism in natural and programming languages: an overview of current

tools and technologies.

[8] Feng, X., Jin, H., Zheng, R., Zhu, L., 2015. Near-duplicate detection using GPU-based

simhash scheme, 223–228 doi:10.1109/SMARTCOMP.2014.7043862.

[9] Grozea, C., Bankovic, Z., Laskov, P., 2010. FPGA vs. Multi-core CPUs vs. GPUs: Hands-On

Experience with a Sorting Application. pp. 105–117. doi:10.1007/978-3-642-16233-6_12.

[10] Gudivada, V., Raghavan, V., Grosky, W., Kasanagottu, R., 1997. Information retrieval on

the world wide web. Internet Computing, IEEE, 58 – 68. doi:10.1109/4236.623969.

[11] Jiffriya, M.A.C., Akmal-Jahan, M.A.C., Gamaarachchi, H., Ragel, R., 2015. Accelerating

text-based plagiarism detection using GPUs, IEEE 10th International Conference on Industrial

and Information Systems (ICIIS), pp. 395–400. doi:10.1109/ICIINFS.2015.7399044.

[12] Jiffriya, M.A.C., Jahan, M.A.C.A., Ragel, R.G., 2014. Plagiarism detection on electronic text-

based assignments using vector space model, in: 7th International Conference on Information and

Automation for Sustainability, pp. 1–5.

[13] Jiffriya, M.A.C., Jahan, M.A.C.A., Ragel, R.G., Deegalla, S., 2013. Antiplag: Plagiarism

detection on electronic submissions of text-based assignments, in: 2013 IEEE 8th International

Conference on Industrial and Information Systems, pp. 376–380.

[14] Justin, L. & Rennich, S., 2011. CUDA warps and occupancy. NVIDIA Corporation.

[15] Kats, Y., 2010. Learning management system technologies and software. solutions for online

teaching: Tools and applications. New York, Information Science Reference Hershey.

doi:10.4018/978-1-61520-853-1.

[16] Lancaster, T., Fintan, C., 2005. Classifications of plagiarism detection engines. Higher

Education Academy Subject Network for Information & Computer Sciences. ITALICS 4.

doi:10.11120/ital.2005.04020006.

[17] Lukashenko, R., Graudina, V., Grundspenkis, J., 2007. Computer based plagiarism detection

methods and tools: An overview, in: Proceedings of the 2007 International Conference on

Computer Systems and Technologies, Association for Computing Machinery, New York, NY,

USA. URL: https://doi.org/10.1145/1330598.1330642, doi:10.1145/1330598.1330642.

[18] Lyon, C., Barrett, R., Malcolm, J., 2004. A theoretical basis to the automated detection of

copying between texts, and its practical implementation in the ferret plagiarism and collusion

detector.

http://www.sciencedirect.com/science/article/pii/S0360131508001930
https://doi.org/10.1016/j.compedu.2008.12.001
https://doi.org/10.1016/j.compedu.2008.12.001
http://www.ithenticate.com/
http://turnitin.com/
https://doi.org/10.1145/1330598.1330642

19

[19] Reinhard R., Johannes G., 2003. Word sense discovery based on sense descriptor

dissimilarity. Proceedings of the Ninth Machine Translation Summit, page 315--322.

[20] Malthan, D., 2006. Plagaware URL: https://www.plagaware.com/

[21] Markus, G. & Johannes, K., 2014. Plagscan URL: https://www.plagscan.com/.

[22] Martin, P., Benno, S., Paolo, R. & Efstathios, S., 2017. PAN. [Online] Available at:

http://pan.webis.de/data.html [Accessed 11 January 2017].

[23] Matam, K.K., Kothapalli, K., 2011. GPU accelerated Lanczos algorithm with applications,

in: 2011 IEEE Workshops of International Conference on Advanced Information Networking and

Applications, pp. 71–76.

[24] Menai, M., 2012. Detection of plagiarism in arabic documents. International Journal of

Information Technology and Computer Science 4, 80–89. doi:10.5815/ijitcs.2012.10.10.

[25] Naseem, R., Kurian, S., 2013. Extrinsic plagiarism detection in text combining vector space

model and fuzzy semantic similarity scheme. International Journal of Advanced Computing,

Engineering and Application (IJACEA), 2(6).

[26] NVIDIA, 2014. CUDA toolkit documentation. NVIDIA Developer.

[27] Plagiarism Detection.org,2008. Plagiarismdetection.org [Online] Available at: URL:

http://www.plagiarismdetection.org. [Accessed 22 April 2017].

[28] Rehurek, R., 2008. Plagiarism detection through vector space models applied to a digital

library, in: Proceedings of Recent Advances in Slavonic Natural Language Processing.

(RASLAN).

[29] S. H. Cruz, M., Kozawa, Y., Amagasa, T., Kitagawa, H., 2015. GPU acceleration of set

similarity joins. International Conference on Database and Expert Systems Applications.

doi:10.1007/978-3-319-22849-5_26.

[30] Shin, K., Han, S.Y., Gelbukh, A., 2004. Balancing manual and automatic indexing for

retrieval of paper abstracts, in: Sojka, P., Kope£ek, I., Pala, K. (Eds.), Text, Speech and Dialogue,

Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 203–210.

[31] Tsai, P., Hsu, Y., Chiu, C.T., Chu, T.T., 2015. Accelerating adaboost algorithm using GPU

for multi-object recognition, pp. 738–741. doi:10.1109/ISCAS.2015.7168739.

[32] Tschuggnall, M., 2013. Specht, G., Detecting plagiarism in text documents through grammar-

analysis of authors.

[33] Turney, P.D., Pantel, P., 2010. From frequency to meaning: Vector space models of

semantics. Journal of Artificial. Intelligence. Research. 37, 141–188.

[34] Uribe-Paredes, R., Valero-Lara, P., Arias, E., Sanchez, J., Cazorla, D., 2011. Similarity

search implementations for multi-core and manycore processors, pp. 656 – 663.

doi:10.1109/HPCSim.2011.5999889.

https://www.plagaware.com/
https://www.plagscan.com/
http://pan.webis.de/data.html
http://www.plagiarismdetection.org/

20

[35] Wang, G., Xiong, Y., Yun, J., Cavallaro, J.R., 2013. Accelerating computer vision algorithms

using OPENCL framework on the mobile GPU - a case study, in: 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing, pp. 2629–2633.

[36] White, D., Joy, M., 2004. Sentence-based natural language plagiarism detection. ACM

Journal of Educational Resources in Computing 4, 1–20. doi:10.1145/1086339.1086341.

[37] Yuan, X., Long, J., Zhang, H., Zhang, Z., Gui, W., 2011. Optimizing a near-duplicate

document detection system with simd technologies. Journal of Computational Information

Systems 7, 3846–3853.

[38] Zechner, M., Muhr, M., Kern, R., Granitzer, M., 2009. External and intrinsic plagiarism

detection using vector space models, in: In Steinet.

[39] Batane, T., 2010. Turning to Turnitin to Fight Plagiarism among University Students.

Educational Technology & Society, 13(2), p. 1–12.

[40] Agarwal, B., Ramampiaro, H., Langseth, H. and Ruocco, M., 2018. A deep network model

for paraphrase detection in short text messages. Information Processing & Management, 54(6),

pp.922-937.

[41] AlSallal, M., Iqbal, R., Palade, V., Amin, S. and Chang, V., 2019. An integrated approach for

intrinsic plagiarism detection. Future Generation Computer Systems, 96, pp.700-712.

[42] Foltýnek, T., Meuschke, N. and Gipp, B., 2020. Academic Plagiarism Detection. ACM

Computing Surveys, 52(6), pp.1-42.

[43] Zeng, Z., Li, Z., Cheng, D., Zhang, H., Zhan, K. and Yang, Y., 2018. Two-Stream Multirate

Recurrent Neural Network for Video-Based Pedestrian Reidentification. IEEE Transactions on

Industrial Informatics, 14(7), pp.3179-3186.

[44] Yu, C., Li, J., Li, X., Ren, X. and Gupta, B., 2017. Four-image encryption scheme based on

quaternion Fresnel transform, chaos and computer generated hologram. Multimedia Tools and

Applications, 77(4), pp.4585-4608

[45] Ahuja, S., Czarnecki, E. and Willison, S., 2020. Multi-Factor Performance Comparison of

Amazon Web Services Elastic Compute Cluster and Google Cloud Platform Compute

Engine. International Journal of Cloud Applications and Computing, 10(3), pp.1-16.

[46] AlZu’bi, S., Shehab, M., Al-Ayyoub, M., Jararweh, Y. and Gupta, B., 2020. Parallel

implementation for 3D medical volume fuzzy segmentation. Pattern Recognition Letters, 130,

pp.312-318.

[47] Li, Z., Nie, F., Chang, X., Nie, L., Zhang, H. and Yang, Y., 2018. Rank-Constrained Spectral

Clustering with Flexible Embedding. IEEE Transactions on Neural Networks and Learning

Systems, 29(12), pp.6073-6082.

[48] Li, Z., Nie, F., Chang, X., Yang, Y., Zhang, C. and Sebe, N., 2018. Dynamic Affinity Graph

Construction for Spectral Clustering Using Multiple Features. IEEE Transactions on Neural

Networks and Learning Systems, 29(12), pp.6323-6332.

View publication statsView publication stats

https://www.researchgate.net/publication/363798118

