Abstract ID: P20

LINEAR STABILITY ANALYSIS OF MORE GENERAL LINEAR ITERATION SCHEME IN THE IMPLEMENTATION OF IMPLICIT RUNGE KUTTA METHODS Abstract ID: P20

ILINEAR STABILITY ANALYSIS OF MORE GENERAL LINEAR

ITERATION SCHEME IN THE IMPLEMENTATION OF

IMPLICIT RUNGE KUTTA METHODS

S. Kajantham^a, R. Vigneswaran^b

²Department of Intersting of Lafina, Sri **STABILITY ANALYSIS OF MORE GENERAL LINEAR

ATION SCHEME IN THE IMPLEMENTATION OF**
 IMPLICIT RUNGE KUTTA METHODS

S. Kajanthan^{*}, R. Vigneswaran⁵
 Department of Interdisciplinary Studies, Faculty of Technology,
 D **EXAMILITY ANALYSIS OF MORE GENERAL LINEAR**
 IABLEME IN THE IMPLIEMENTATION OF
 IMPLICIT RUNGE KUTTA METHODS

S. Kajanthan^{a+}, R. Vigneswaran^b

Department of Interdisciplinary Studies, Faculty of Technology,
 $\sum_{\$ Abstract ID: P20

SIS OF MORE GENERAL LINEAR

THE IMPLEMENTATION OF

E KUTTA METHODS
 x^* , R. Vigneswaran^b
 x^* Abstract ID: P20

Abstract ID: P20

RATION SCHEME IN THE IMPLEMENTATION OF

IMPLICIT RUNGE KUTTA METHODS

S. Kajanthan^{a*}, R. Vigneswaran^h

"Department of Interdisciplinary Studies, Faculty of Technology,

"Department **ALYSIS OF MORE GENERAL LINEAR**
 IE IN THE IMPLEMENTATION OF
 IEMBER EUTTA METHODS

striplinary Studies, Faculty of Technology,

striply of Jaffina, Sri Lanka.

matrics and Statistics, Faculty of Science,

 Abstr

S. Kajanthan^{a*}, R. Vigneswaran^b

 a Department of Interdisciplinary Studies, Faculty of Technology, University of Jaffna, Sri Lanka. b Department of Mathematics and Statistics, Faculty of Science, University of Jaffna, Sri Lanka. *

kajanthans@univ.jfn.ac.lk

Abstract

A more general linear iterative scheme solves non-linear equations arising in the implementation of implicit Runge-Kutta methods proposed by Cooper and Butcher is of the form

$$
\[I_s \otimes (I_n - h\lambda J)\]E^m = (BS^{-1} \otimes I_n)D(Y^{m-1}) + (L \otimes I_n)E^m,
$$

$$
Y^m = Y^{m-1} + (S \otimes I_n)E^m, \quad m = 1, 2, ...,
$$

Abstract ID: P20
 NALYSIS OF MORE GENERAL LINEAR

ME IN THE IMPLEMENTATION OF

RUNGE KUTTA METHODS

janthan^{*}, R. Vigneswaran^b
 disciplinary Studies, Faculty of Technology,
 versity of Jaffna, Sri Lanka.
 Abst **ANALYSIS OF MORE GENERAL LINEAR**
 EME IN THE IMPLEMENTATION OF
 TRUNGE KUTTA METHODS

Sajanthan^{*}, R. Vigneswaran^b

 P erdisciplinary Studies, Faculty of Technology,

miversity of Jaffna, Sri Lanka.

 kajant **IMPLICIT RUNGE KUTTA METHODS**

S. Kajanthan^{a*}, R. Vigneswaran^b

^{*a}Department of Interdisciplinary Studies, Faculty of Technology,

<i>University of Jaffha*, *Sri Lanka.*
 *b*Department of Mathematics and Statistics, </sup> matrix of order s, and λ is a real constant. They showed that successive over relaxation technique applied to improve the convergence rate of this scheme. Later, convergence result of this scheme established by proving some theoretical results suitable for stiff problems. This article examines stability properties of this linear iterative scheme with the alternate approximation f Mathematics and Statistics, Faculty of Science,

University of Jaffna, Sri Lanka.

"kajanthans@univ.jfn.ac.lk
 Abstract
 Abstract
 Abstract
 Abstract
 Abstract
 Abstract
 Abstract
 Abstract
 Abstract
 *Department of Mathematics and Statistics, Faculty of Science,
 Δ . The straight of Science,
 Δ . The straight answers of Δ . The straight of Δ . The straight of Δ . Abstract

A more general linear iterativ A more general linear iterative scheme solves non-linear equations arising in the
implementation of implicit Runge-Kutta methods proposed by Cooper and Butcher
is of the form
 $\left[I_x \otimes (I_n - h\lambda J)\right]E^m = \left(BS^{-1} \otimes I_n\right)D\left(Y^{n+1$ non-linear equations arising in the

ds proposed by Cooper and Butcher
 $((Y^{m-1})+(L\otimes I_n)E^m,$
 $)E^m$, $m=1,2,...$,

es and L is strictly lower triangular

They showed that successive over

vergence rate of this scheme. Late ative scheme solves non-linear equations arising in the

Runge-Kutta methods proposed by Cooper and Butcher
 $\iiint_{E''} E(BS^{-1} \otimes I_n)D(Y^{m-1}) + (L \otimes I_n)E^m$,
 $Y^m = Y^{m-1} + (S \otimes I_n)E^m$, $m = 1, 2, ...,$

s non-singular matrices and L rative scheme solves non-linear equations arising in the

Runge-Kutta methods proposed by Cooper and Butcher
 $\iiint_E^m = (BS^{-1} \otimes I_n)D(Y^{m-1}) + (L \otimes I_n)E^m$,
 $Y^m = Y^{m-1} + (S \otimes I_n)E^m$, $m = 1, 2, ...,$

s non-singular matrices and L erative scheme solves non-linear equations arising in the
it Runge-Kutta methods proposed by Cooper and Butcher
 J] $E^m = (BS^{-1} \otimes I_n)D(Y^{m-1})+(L \otimes I_n)E^m$,
 $Y^m = Y^{m-1}+(S \otimes I_n)E^m$, $m = 1, 2, ...,$
ex non-singular matrices and s non-linear equations arising in the

ods proposed by Cooper and Butcher
 $D(Y^{m-1}) + (L \otimes I_n) E^m$,
 $m = 1, 2, ...,$

ces and *L* is strictly lower triangular

They showed that successive over

nvergence rate of this scheme. L e^x scheme solves non-linear equations arising in the

mge-Kutta methods proposed by Cooper and Butcher
 $e^{r_m} = (BS^{-1} \otimes I_n)D(Y^{n-1}) + (L \otimes I_n)E^m$,
 $e^{r_m} = Y^{n-1} + (S \otimes I_n)E^m$, $m = 1, 2, ...,$
 $e^{r_m} = Y^{n-1} + (S \otimes I_n)E^m$, $m =$ le form
 $\left[I_s \otimes (I_n - h\lambda J)\right] E^m = (BS^{-1} \otimes I_n)D(Y^{m-1}) + (L \otimes I_n)E^m$,
 $Y^m = Y^{m-1} + (S \otimes I_n)E^m$, $m = 1, 2, ...,$
 B and *S* are real *s x s* non-singular matrices and *L* is strictly lower triangular

of order *s*, and *λ* $I_s \otimes (I_n - h\lambda J)$ $E^m = (BS^{-1} \otimes I_n)D(Y^{m-1}) + (L \otimes I_n)E^m$,
 $Y^m = Y^{m-1} + (S \otimes I_n)D(Y^{m-1}) + (L \otimes I_n)E^m$,
 $Y^m = Y^{m-1} + (S \otimes I_n)E^m$, $m = 1, 2, ...,$

45 are real 5×5 non-singular matrices and *L* is strictly lower triangular

and $\$ 2^{n-2} \rightarrow ∞ \rightarrow ∞ ∞ $I_n |D(Y^m|^2) + (L \otimes I_n) E^m$,
 $S \otimes I_n |E^m$, $m = 1, 2, ...,$

matrices and *L* is strictly lower triangular

ant. They showed that successive over

econvergence rate of this scheme. Later,

shed by proving some theoretical result $Y^m = Y^{m-1} + (S \otimes I_n) E^m$, $m = 1, 2, ...,$

where *B* and *S* are real *s* × *s* non-singular matrices and *L* is strictly lower triangular

matrix of order *s*, and λ is a real constant. They showed that successive over

r $Y^m = Y^{m-1} + (S \otimes I_n) F^m$, $m = 1, 2, ...,$

orce *B* and *S* are real *s* × s non-singular matrices and *L* is strictly lower triangular

trix of order *s*, and λ is a real constant. They showed that successive over

axatio

$$
y_{n+1}^k = y_n + h\Big(b^T A^{-1} \otimes I\Big)\Big(Y^k - e \otimes y_n\Big) .
$$

stiff problem. For a fixed starting value $Y^0 = e \otimes y_n$, we obtain

$$
y_{n+1}^{k} = R(z)y_{n} + b^{T} A^{-1} M(z)^{k} \left(I - \frac{1}{z} A^{-1}\right)^{-1} e y_{n}
$$

here $R(z) = 1 + zb^{T}(I - zA)^{-1}e$ is the stability function of the method and $M(z) = (Q - zT)^{-1} [Q - I + z(A - T)]$ where $Q = SB^{-1}(I - L)S^{-1}$ and $T = \lambda SB^{-1}S^{-1}$.
This shows that linear stability properties were preserved in the limit.

Keywords: iteration scheme, linear stability, implicit Runge Kutta methods