Please use this identifier to cite or link to this item:
http://ir.lib.seu.ac.lk/handle/123456789/5937
Title: | Accident Mitigation System with Drowsiness Detection: A Machine Learning and Iot with Hybrid Approach |
Authors: | Suhail Razeeth, M.S. Kariapper, R.K.A.R. Sabraz Nawaz, S. |
Keywords: | Wireless sensor networks Machine learning algorithms Velocity control Sociology Prototypes Fatigue Sensors |
Issue Date: | 14-Jul-2021 |
Publisher: | Institute of Electrical and Electronics Engineers Inc |
Citation: | International Conference on Information Technology, ICIT 2021 - Proceedings; Al-Zaytoonah University of Jordan (ZUJ)Amman;Article number 9491646; pp: 462-465 |
Abstract: | Accidents are unavoidable with population growth around the world. There have been numerous researches conducted to preserve both life and morals. Drowsiness and fatigue have been consistently identified as significant causes of accidents. Instead of relying on limited methods to detect drowsiness and tiredness, this study incorporates deep learning in conjunction with IoT. This study focuses on developing a prototype to minimize road accidents due to drowsiness, fatigue, carelessness, and other reasons. The CNN algorithm handled drowsiness detection; drivers will be notified as soon as they fall asleep. This study takes a novel approach by combining machine learning with drunk avoidance, direction control, speed control, and distance preservation. When paired with proper guidance, the said hybrid approach would produce the best solution to the accident issues without suspects. |
URI: | https://doi.org/10.1109/ICIT52682.2021.9491646 http://ir.lib.seu.ac.lk/handle/123456789/5937 |
ISBN: | 978-1-6654-2870-5 (Electronic) 978-1-6654-2871-2 |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Accident Mitigation System with Drowsiness Detection....pdf | 195.9 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.